
1

Deletion

Delete node x from a tree T
We can distinguish three cases

x has no children
x has one child
x has two children

2

3

Deletion Case 1
If x has no children – just remove x

4

Deletion Case 2
If x has exactly one child, then to delete x,
simply make p[x] point to that child

5

Deletion Case 3

If x has two children, then
to delete it we have to

find its successor (or
predecessor) y
remove y (note that y has
at most one child – why?)
replace x with y

6

Delete Pseudocode
TreeDelete(T,z)
01 if left[z] = NIL or right[z] = NIL
02 then y ← z
03 else y ← TreeSuccessor(z)
04 if left[y] ≠ NIL
05 then x ← left[y]
06 else x ← right[y]
07 if x ≠ NIL
08 then p[x] ← p[y]
09 if p[y] = NIL
10 then root[T] ← x
11 else if y = left[p[y]]
12 then left[p[y]] ← x
13 else right[p[y]] ← x
14 if y ≠ z
15 then key[z] ← key[y] //copy all fileds of y
16 return y

7

In order traversal of a BST

ITW can be thought of as a projection of
the BST nodes onto a one dimensional
interval

8

BST Sorting
Use TreeInsert and InorderTreeWalk to
sort a list of n elements, A

TreeSort(A)
01 root[T] ← NIL
02 for i ← 1 to n
03 TreeInsert(T,A[i])
04 InorderTreeWalk(root[T])

9

Sort the following numbers
5 10 7 1 3 1 8
Build a binary search tree

Call InorderTreeWalk

1 1 3 5 7 8 10

BST Sorting (2)

10

In what order should we insert?
We want to sort numbers {1,2,…,n}
Total time taken to insert these numbers
equals the sum of the level numbers of the
nodes.
Thus if numbers were inserted in
ascending order we would get a tree of
height n-1 in which there is one node at
each level.
So total time for insertion in this case is
1+2+3+…+n-1 = O(n2).

11

Inserting a random permutation

Suppose we take a random permutation of the
keys and inserted them in this order.
The total time required for insertion is now a
random variable.
We want to compute the expected value of this
r.v.
Recall that the expected value of a r.v. is the
average value it takes over a large number of
trials.

12

13

14

Expected insertion time for a random
permutation

We will compute the average time taken to
insert keys in the order specified by the n!
permutations.
In other words, for each of the n!
permutations we will compute the time
taken to insert keys in that order and then
compute the average.
Let T(n) denote this quantity.

15

Inserting a random permutation (2)

Of the n! permutations, there are (n-1)!
permutations in which the first element is i.
The tree formed in these instances has i as
the root. The left subtree has keys 1..(i-1)
and the right subtree has keys (i+1)..n
Consider the ordering of keys 1..(i-1) in the
(n-1)! permutations. All (i-1)! permutations
appear and each occurs (n-1)!/(i-1)! times.

16

Inserting a random permuation(3)

Recall that if we only had keys 1..(i-1) then
average time taken to insert them is T(i-1).
The average is taken over all permutations
of 1..(i-1).
hence total time to insert all (i-1)!
permutations is (i-1)!T(i-1).

17

Inserting a random permutation(4)

When inserting keys 1..(i-1) into the left
subtree, each key has to be compared with
the root.
This leads to an additional unit cost for each
key.
So total time to insert all (i-1)! permutations
is (i-1)!(T(i-1)+(i-1)).
Since each permutation appears (n-1)!/(i-1)!
times, total time to insert keys 1..(i-1) is
(n-1)!(T(i-1)+(i-1))

18

Inserting a random permutation(5)

Time to insert keys 1..(i-1) is
(n-1)!(T(i-1)+(i-1))
Similarly, time to insert keys (i+1)..n is
(n-1)!(T(n-i)+(n-i))
Total time to insert all n keys in
permutations where the first key is i is
(n-1)! (T(i-1)+T(n-i)+ n-1)
Total time to insert all n keys in all n!
permutations is
(n-1)! ∑i=1

n (T(i-1)+T(n-i)+ n-1).

19

Building the recurrence

We are expressing the value of function T() at
point n in terms of the value of T() at points 0..n-
1. This is called a recurrence relation.

20

Solving the recurrence

21

Solving the recurrence(2)

22

Summing the harmonic series
What is the sum ½+ 1/3 + ¼+…1/n?

1/2
1/3

1/41/51/6

1 2 3 4 5 6 n
x

1/x

It is at most the area under the curve f(x)=1/x
between limits 1 and n

1/n

23

The expected time for insertion

Thus the expected time for inserting a
randomly chosen permutation of n keys is
O(n log n)

24

Minimum time to insert n keys
The time required to insert n keys is
minimum when the resulting tree has the
smallest possible height.
A binary tree on n nodes has height at
least log2 n
To insert the n/2 nodes at level log2 n we
require at least (n/2)log2 n time.
Hence inserting n keys requires Ω(nlog2 n)
time.

25

Summary of Running times

To insert n keys into a binary search tree
which is initially empty requires
O(n2) time in the worst case.
O(nlog n) time in the best case.
O(nlog n) time in the average case; the
average is taken over the n! different
orders in which the n keys could be
inserted.

	Deletion
	Slide Number 2
	Deletion Case 1
	Deletion Case 2
	Deletion Case 3
	Delete Pseudocode
	In order traversal of a BST
	BST Sorting
	BST Sorting (2)
	In what order should we insert?
	Inserting a random permutation
	Slide Number 12
	Slide Number 13
	Expected insertion time for a random permutation
	Inserting a random permutation (2)
	Inserting a random permuation(3)
	Inserting a random permutation(4)
	Inserting a random permutation(5)
	Building the recurrence
	Solving the recurrence
	Solving the recurrence(2)
	Summing the harmonic series
	The expected time for insertion
	Minimum time to insert n keys
	Summary of Running times

