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Deletion

Delete node x from a tree T
We can distinguish three cases

x has no children
x has one child
x has two children
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Deletion Case 1
If x has no children – just remove x
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Deletion Case 2
If x has exactly one child, then to delete x, 
simply make p[x] point to that child
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Deletion Case 3

If x has two children, then 
to delete it we have to

find its successor (or 
predecessor) y
remove y (note that y has 
at most one child – why?)
replace x with y
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Delete Pseudocode
TreeDelete(T,z)
01 if left[z] = NIL or right[z] = NIL
02 then y ← z
03 else y ← TreeSuccessor(z)
04 if left[y] ≠ NIL
05 then x ← left[y]
06 else x ← right[y]
07 if x ≠ NIL
08 then p[x] ← p[y]
09 if p[y] = NIL
10 then root[T] ← x
11 else if y = left[p[y]]
12 then left[p[y]] ← x
13 else right[p[y]] ← x
14 if y ≠ z
15 then key[z] ← key[y] //copy all fileds of y
16 return y
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In order traversal of a BST

ITW can be thought of as a projection of 
the BST nodes onto a one dimensional 
interval
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BST Sorting
Use TreeInsert and InorderTreeWalk to 
sort a list of n elements, A

TreeSort(A)
01 root[T] ← NIL
02 for i ← 1 to n
03 TreeInsert(T,A[i])
04 InorderTreeWalk(root[T])
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Sort the following numbers
5 10 7 1 3 1 8
Build a binary search tree

Call InorderTreeWalk

1 1 3 5 7 8 10

BST Sorting (2)
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In what order should we insert?
We want to sort numbers {1,2,…,n}
Total time taken to insert these numbers 
equals the sum of the level numbers of the 
nodes. 
Thus if numbers were inserted in 
ascending order we would get a tree of 
height n-1 in which there is one node at 
each level.
So total time for insertion in this case is 
1+2+3+…+n-1 = O(n2).
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Inserting a random permutation

Suppose we take a random permutation of the 
keys and inserted them in this order.
The total time required for insertion is now a 
random variable.
We want to compute the expected value of this 
r.v.
Recall that the expected value of a r.v. is the 
average value it takes over a large number of 
trials.
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Expected insertion time for a random 
permutation

We will compute the average time taken to 
insert keys in the order specified by the n! 
permutations. 
In other words, for each of the n! 
permutations we will compute the time 
taken to insert keys in that order and then 
compute the average.
Let T(n) denote this quantity.
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Inserting a random permutation (2)

Of the n! permutations, there are (n-1)! 
permutations in which the first element is i.
The tree formed in these instances has i as 
the root. The left subtree has keys 1..(i-1) 
and the right subtree has keys (i+1)..n
Consider the ordering of keys 1..(i-1) in the 
(n-1)! permutations. All (i-1)! permutations 
appear and each occurs (n-1)!/(i-1)! times.
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Inserting a random permuation(3)

Recall that if we only had keys 1..(i-1) then 
average time taken to insert them is T(i-1).
The average is taken over all permutations 
of 1..(i-1).
hence total time to insert all (i-1)! 
permutations is (i-1)!T(i-1).
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Inserting a random permutation(4)

When inserting keys 1..(i-1) into the left 
subtree, each key has to be compared with 
the root. 
This leads to an additional unit cost for each 
key.
So total time to insert all (i-1)! permutations 
is (i-1)!(T(i-1)+(i-1)).
Since each permutation appears (n-1)!/(i-1)! 
times, total time to insert keys 1..(i-1) is     
(n-1)!(T(i-1)+(i-1)) 
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Inserting a random permutation(5)

Time to insert keys 1..(i-1) is                    
(n-1)!(T(i-1)+(i-1))
Similarly, time to insert keys (i+1)..n is     
(n-1)!(T(n-i)+(n-i))
Total time to insert all n keys in 
permutations where the first key is i is     
(n-1)! (T(i-1)+T(n-i)+ n-1)
Total time to insert all n keys in all n! 
permutations is                                        
(n-1)! ∑i=1

n (T(i-1)+T(n-i)+ n-1).
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Building the recurrence

We are expressing the value of function T() at 
point n in terms of the value of T() at points 0..n-
1. This is called a recurrence relation.
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Solving the recurrence
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Solving the recurrence(2)
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Summing the harmonic series
What is the sum ½+ 1/3 + ¼+…1/n?

1/2
1/3

1/41/51/6

1   2   3  4   5   6                                         n 
x

1/x

It is at most the area under the curve f(x)=1/x 
between limits 1 and n

1/n
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The expected time for insertion

Thus the expected time for inserting a 
randomly chosen permutation of n keys is 
O(n log n)
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Minimum time to insert n keys
The time required to insert n keys is 
minimum when the resulting tree has the 
smallest possible height.
A binary tree on n nodes has height at 
least log2 n
To insert the n/2 nodes at level log2 n we 
require at least (n/2)log2 n time.
Hence inserting n keys requires Ω(nlog2 n) 
time.
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Summary of Running times

To insert n keys into a binary search tree 
which is initially empty requires
O(n2) time in the worst case.
O(nlog n) time in the best case.
O(nlog n) time in the average case; the 
average is taken over the n! different 
orders in which the n keys could be 
inserted.
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