Ordered Dictionaries

In addition to dictionary functionality, we want to support following operations:
 Min()
 Max()
 Predecessor(S, k)

Successor(S, k)

For this we require that there should be a total order on the keys.

A List-Based Implementation

Unordered list

- \Box searching takes O(n) time
- \Box inserting takes O(1) time

Ordered list

- \Box searching takes O(n) time
- □ inserting takes O(n) time
- Using array would definitely improve search time.

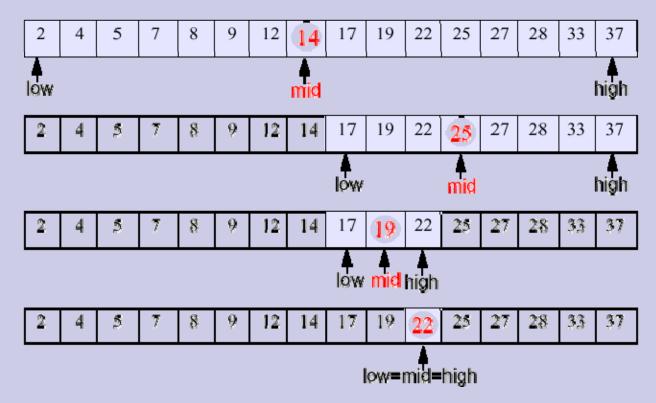
12

14

22

Binary Search

Narrow down the search range in stages findElement(22)



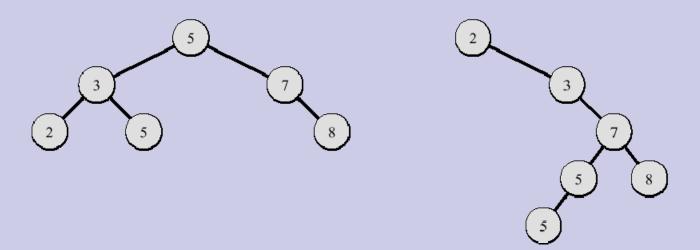
Running Time

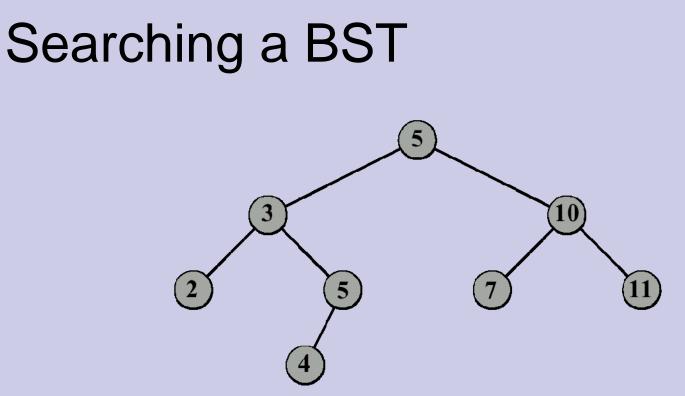
- The range of candidate items to be searched is halved after comparing the key with the middle element
- Binary search runs in O(lg n) time (remember recurrence...)
- What about insertion and deletion?

Binary Search Trees

□ A binary search tree is a binary tree T such that

- \square each internal node stores an item (*k*,*e*) of a dictionary
- keys stored at nodes in the left subtree of v are less than or equal to k
- keys stored at nodes in the right subtree of v are greater than or equal to k
- Example sequence 2,3,5,5,7,8



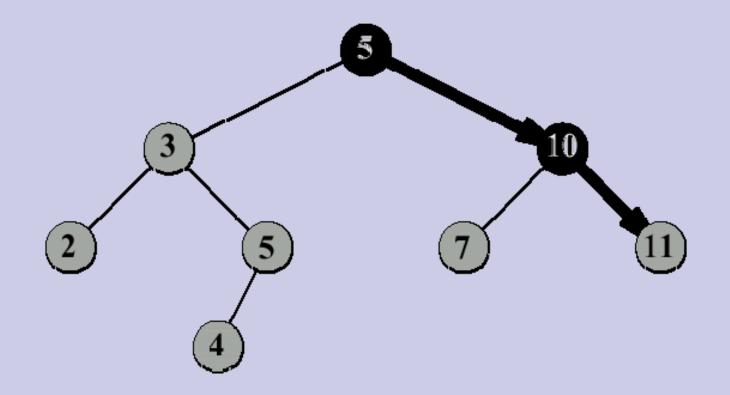


To find an element with key k in a tree T
 compare k with key[root[7]]
 if k a key [root[7]]

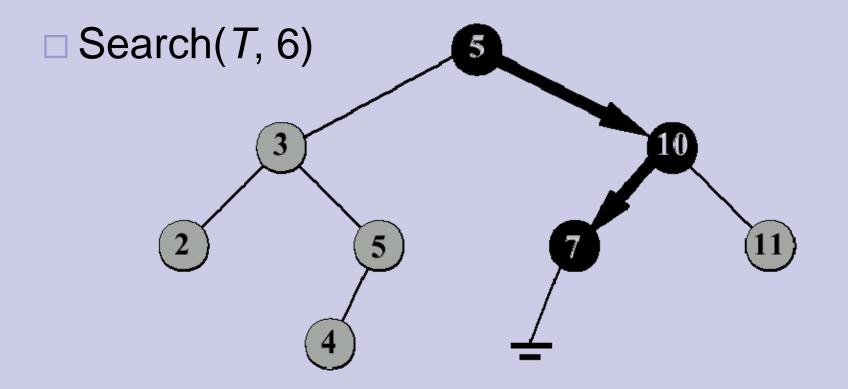
if k < key[root[7]], search for k in left[root[7]]
 otherwise, search for k in right[root[7]]

Search Examples

\Box Search(*T*, 11)



Search Examples (2)



Pseudocode for BST Search

Recursive version

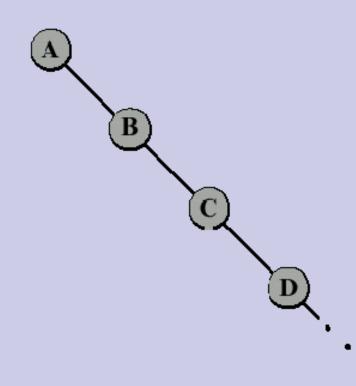
```
Search(T,k)
01 x ← root[T]
02 if x = NIL then return NIL
03 if k = key[x] then return x
04 if k < key[x]
05 then return Search(left[x],k)
06 else return Search(right[x],k)</pre>
```

□ Iterative version

```
Search(T,k)
01 x ← root[T]
02 while x ≠ NIL and k ≠ key[x] do
03 if k < key[x]
04 then x ← left[x]
05 else x ← right[x]
06 return x</pre>
```

Analysis of Search

- \Box Running time on tree of height *h* is O(h)
- □ After the insertion of *n* keys, the worstcase running time of searching is O(n)



BST Minimum (Maximum)

□ Find the minimum key in a tree rooted at x

TreeMinimum(x)

01 while left[x] \neq NIL

02 do $x \leftarrow left[x]$

03 **return** x

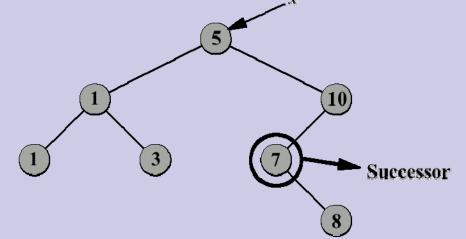
Running time O(h), i.e., it is proportional to the height of the tree

Successor

- Given x, find the node with the smallest key greater than key[x]
- We can distinguish two cases, depending on the right subtree of x

Case 1

- □ right subtree of x is nonempty
- □ successor is leftmost node in the right subtree (Why?)
- this can be done by returning TreeMinimum(right[x])

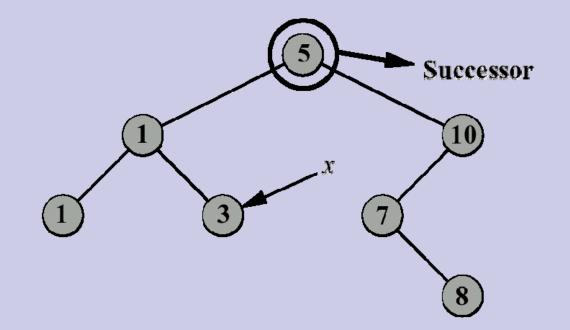


Successor (2)

Case 2

 \Box the right subtree of *x* is empty

successor is the lowest ancestor of x whose left child is also an ancestor of x (Why?)



Successor Pseudocode

```
TreeSuccessor(x)
```

```
01 if right[x] \neq NIL

02 then return TreeMinimum(right[x])

03 y \leftarrow p[x]

04 while y \neq NIL and x = right[y]

05 x \leftarrow y

06 y \leftarrow p[y]
```

03 return y

□ For a tree of height h, the running time is O(h)

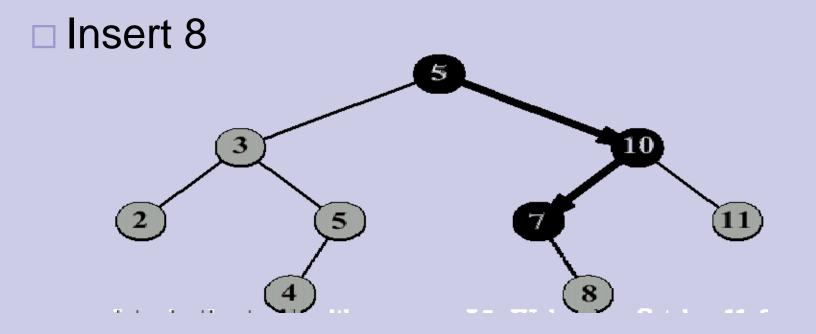
BST Insertion

The basic idea is similar to searching

- □ take an element z (whose left and right children are NIL) and insert it into T
- ☐ find place in T where z belongs (as if searching for z),
- and add z there

The running on a tree of height h is O(h), i.e., it is proportional to the height of the tree

BST Insertion Example



BST Insertion Pseudo Code

```
TreeInsert(T,Z)
01 y \leftarrow NIL
02 \times \leftarrow root[T]
03 while x \neq NIL
04 y \leftarrow x
05 if key[z] < key[x]
06 then x \leftarrow left[x]
07 else x \leftarrow right[x]
08 p[z] \leftarrow y
09 if y = NIL
10 then root[T] \leftarrow z
11 else if key[z] < key[y]
12 then left[y] \leftarrow z
13
        else right[y] \leftarrow z
```

BST Insertion: Worst Case

In what sequence should insertions be made to produce a BST of height n?

