
1

Ordered Dictionaries

In addition to dictionary functionality, we
want to support following operations:

Min()
Max()
Predecessor(S, k)
Successor(S, k)

For this we require that there should be a
total order on the keys.

2

A List-Based Implementation
Unordered list

searching takes O(n) time
inserting takes O(1) time

Ordered list
searching takes O(n) time
inserting takes O(n) time
Using array would definitely improve search
time.

3

Binary Search

Narrow down the search range in stages
findElement(22)

4

Running Time

The range of candidate items to be searched is
halved after comparing the key with the middle
element
Binary search runs in O(lg n) time (remember
recurrence...)
What about insertion and deletion?

5

Binary Search Trees
A binary search tree is a binary tree T such that

each internal node stores an item (k,e) of a dictionary
keys stored at nodes in the left subtree of v are less
than or equal to k
keys stored at nodes in the right subtree of v are
greater than or equal to k

Example sequence 2,3,5,5,7,8

6

Searching a BST

To find an element with key k in a tree T
compare k with key[root[T]]
if k < key[root[T]], search for k in left[root[T]]
otherwise, search for k in right[root[T]]

7

Search Examples

Search(T, 11)

8

Search Examples (2)

Search(T, 6)

9

Recursive version

Pseudocode for BST Search

Search(T,k)
01 x ← root[T]
02 if x = NIL then return NIL
03 if k = key[x] then return x
04 if k < key[x]
05 then return Search(left[x],k)
06 else return Search(right[x],k)

Search(T,k)
01 x ← root[T]
02 while x ≠ NIL and k ≠ key[x] do
03 if k < key[x]
04 then x ← left[x]
05 else x ← right[x]
06 return x

Iterative version

10

Analysis of Search
Running time on tree of height h is O(h)
After the insertion of n keys, the worst-
case running time of searching is O(n)

11

BST Minimum (Maximum)

Find the minimum key in a tree rooted at x

Running time O(h), i.e., it is proportional to
the height of the tree

TreeMinimum(x)
01 while left[x] ≠ NIL
02 do x ← left[x]
03 return x

12

Successor
Given x, find the node with the smallest key
greater than key[x]
We can distinguish two cases, depending on the
right subtree of x
Case 1

right subtree of x is nonempty
successor is leftmost node in the right subtree (Why?)
this can be done by returning TreeMinimum(right[x])

13

Successor (2)
Case 2

the right subtree of x is empty
successor is the lowest ancestor of x whose
left child is also an ancestor of x (Why?)

14

For a tree of height h, the running time is
O(h)

Successor Pseudocode
TreeSuccessor(x)
01 if right[x] ≠ NIL
02 then return TreeMinimum(right[x])
03 y ← p[x]
04 while y ≠ NIL and x = right[y]
05 x ← y
06 y ← p[y]
03 return y

15

BST Insertion

The basic idea is similar to searching
take an element z (whose left and right
children are NIL) and insert it into T
find place in T where z belongs (as if
searching for z),
and add z there

The running on a tree of height h is O(h),
i.e., it is proportional to the height of the
tree

16

BST Insertion Example

Insert 8

17

BST Insertion Pseudo Code
TreeInsert(T,z)
01 y ← NIL
02 x ← root[T]
03 while x ≠ NIL
04 y ← x
05 if key[z] < key[x]
06 then x ← left[x]
07 else x ← right[x]
08 p[z] ← y
09 if y = NIL
10 then root[T] ← z
11 else if key[z] < key[y]
12 then left[y] ← z
13 else right[y] ← z

18

BST Insertion: Worst Case

In what sequence should insertions be
made to produce a BST of height n?

	Ordered Dictionaries
	A List-Based Implementation
	Binary Search
	Running Time
	Binary Search Trees
	Searching a BST
	Search Examples
	Search Examples (2)
	Pseudocode for BST Search
	Analysis of Search
	BST Minimum (Maximum)
	Successor
	Successor (2)
	Successor Pseudocode
	BST Insertion
	BST Insertion Example
	BST Insertion Pseudo Code
	BST Insertion: Worst Case

