
Hashing

Hash functions
Hash-code maps
Compression maps

Open addressing
Linear Probing
Double hashing

Hash Functions
Need to choose a good hash function

quick to compute
distributes keys uniformly throughout the table
good hash functions are very rare – birthday
paradox

How to deal with hashing non-integer keys:
find some way of turning keys into integers

eg. remove hyphen in 9635-8904 to get 96358904!
for a string, add up ASCII values of the characters of
your string (e.g., java.lang.String.hashCode())

then use standard hash function on the integers

From Keys to Indices
The mapping of keys to indices of a hash table
is called a hash function
A hash function is usually the composition of
two maps, a hash code map and a
compression map.

An essential requirement of the hash function
is to map equal keys to equal indices
A “good” hash function minimizes the
probability of collisions

Popular Hash-Code Maps

Integer cast: for numeric types with 32 bits or
less, we can reinterpret the bits of the
number as an int
Component sum: for numeric types with
more than 32 bits (e.g., long and double), we
can add the 32-bit components.
Why is the component-sum hash code bad
for strings?

Hash-Code Maps (2)
Polynomial accumulation: for strings of a natural
language, combine the character values (ASCII
or Unicode) a0a1 ... an-1 by viewing them as the
coefficients of a polynomial:

a0 + a1x + ...+ xn-1an-1
The polynomial is computed with Horner’s rule,
ignoring overflows, at a fixed value x:

a0 + x (a1 +x (a2+ ... x (an-2+ x an-1) ...))
The choice x = 33, 37, 39, or 41 gives at most 6
collisions on a vocabulary of 50,000 English
words

Compression Maps
Use the remainder

h(k) = k mod m, k is the key, m the size of the
table

Need to choose m
m = be (bad)

if m is a power of 2, h(k) gives the e least
significant bits of k
all keys with the same ending go to the same
place

m prime (good)
helps ensure uniform distribution
primes not too close to exact powers of 2

Compression Maps (2)
Example

hash table for n = 2000 character strings
we don’t mind examining 3 elements
m = 701

a prime near 2000/3
but not near any power of 2

Compression Maps (3)
Use

h(k) = ⎣m (k A mod 1) ⎦
k is the key, m the size of the table, and A
is a constant
0 < A < 1

The steps involved
map 0...kmax into 0...kmax A
take the fractional part (mod 1)
map it into 0...m-1

Compression Maps (4)

Choice of m and A
value of m is not critical, typically use m =
2p

optimal choice of A depends on the
characteristics of the data
Knuth says use (conjugate of the
golden ratio) – Fibonacci hashing

5 1
2

A −
=

Compression Maps (5)

Multiply, Add, and Divide (MAD):
h(k) = |ak + b| mod N

eliminates patterns provided a is not a
multiple of N
same formula used in linear congruential
(pseudo) random number generators

Universal Hashing
For any choice of hash function, there exists a
bad set of identifiers
A malicious adversary could choose keys to be
hashed such that all go into the same slot
(bucket)
Average retrieval time is Θ(n)
Solution

a random hash function
choose hash function independently of keys!
create a set of hash functions H, from which h can
be randomly selected

Universal Hashing (2)

A collection H of hash functions is
universal if for any randomly chosen f
from H (and two keys k and l),

Pr{f(k) = f(l)} ≤ 1/m

More on Collisions

A key is mapped to an already occupied
table location

what to do?!?
Use a collision handling technique
We’ve seen Chaining
Can also use Open Addressing

Probing
Double Hashing

Open Addressing

All elements are stored in the hash table
(can fill up!), i.e., n ≤ m
Each table entry contains either an element
or null
When searching for an element,
systematically probe table slots

Open Addressing (2)

Modify hash function to take the probe
number i as the second parameter

Hash function, h, determines the
sequence of slots examined for a given
key
Probe sequence for a given key k given by
(,0), (,1),..., (, 1) - a permutation of 0,1,..., 1h k h k h k m m− −

{ } { }: 0,1,..., 1 0,1,..., 1h U m m× − → −

Linear Probing
If the current location is used, try the next table
location

Uses less memory than chaining as one does not
have to store all those links
Slower than chaining since one might have to
walk along the table for a long time

LinearProbingInsert(k)
if (table is full) error
probe = h(k)
while (table[probe] occupied)

probe = (probe+1) mod m
table[probe] = k

Linear Probing Example
h(k) = k mod 13
insert keys: 18 41 22 44 59 32 31 73

1841 2244 59 32

44 32

31

31

73

73

Lookup in linear probing

To search for a key k we go to (k mod 13) and
continue looking at successive locations till we
find k or encounter an empty location.
Successful search: To search for 31 we go to
(31 mod 13) = 5 and continue onto 6,7,8… till we
find 31 at location 10
Unsuccessful search: To search for 33 we go to
(33 mod 5 = 7) and continue till we encounter an
empty location (12)

1841 2244 59 32 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

Deletion in Linear Probing

To delete key 32 we first search for 32.
32 is found in location 8. Suppose we set this
location to null.
Now if we search for 31 we will encounter a null
location before seeing 31.
Lookup procedure would declare that 31 is not
present.

1841 2244 59 32 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

Deletion (2)

Instead of setting location 8 to null place a
tombstone (a marker) there.
When lookup encounters a tombstone it ignores
it and continues with next location.
If Insert comes across a tombstone it puts the
element at that location and removes the
tombstone.
Too many tombstones degrades lookup
performance.
Rehash if there are too many tombstones.

1841 2244 59 X 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

Double Hashing
Uses two hash functions, h1, h2

h1(k) is the position in the table where we first
check for key k
h2(k) determines the offset we use when
searching for k
In linear probing h2(k) is always 1.

DoubleHashingInsert(k)
if (table is full) error
probe = h1(k); offset = h2(k)
while (table[probe] occupied)

probe = (probe+offset) mod m
table[probe] = k

Double Hashing(2)

If m is prime, we will eventually examine
every position in the table
Many of the same (dis)advantages as
linear probing
Distributes keys more uniformly than linear
probing

Double Hashing Example

h1(k) = k mod 13
h2(k) = 8 – (k mod 8)
insert keys: 18 41 22 44 59 32 31 73

18 41 22 44 59 32 31 73

0 1 2 3 4 5 6 7 8 9 10 11 12

Analysis of Double Hashing

The load factor α is less than 1.
We assume that every probe looks at a
random location in the table.
1- α fraction of the table is empty.
Expected number of probes required to
find an empty location (unsuccessful
search) is 1/(1- α)

Analysis (2)

Average no of probes for a successful
search = average no of probes required to
insert all the elements.
To insert an element we need to find an
empty location.

inserting Avg no of probes Total no of probes
First m/2 <= 2 m
Next m/4 <= 4 m
Next m/8 <= 8 m

Analysis(3)
No of probes required to insert
m/2+m/4+m/8+…+m/2i elements = number of
probes required to leave 2-i fraction of the table
empty = m x i.
No of probes required to leave 1- α fraction of
the table empty = - m log (1- α)
Average no. of probes required to insert n
elements is - (m/n) log (1- α) = -(1/α) log (1- α)

Expected Number of Probes
Load factor α < 1 for probing
Analysis of probing uses uniform hashing
assumption – any permutation is equally likely

What about linear probing and double hashing?

unsuccessful successful
chaining

probing

(1)O α+

1 1ln
α 1 α

O⎛ ⎞
⎜ ⎟−⎝ ⎠

1
1 α

O⎛ ⎞
⎜ ⎟−⎝ ⎠

(1)O α+

Expected Number of Probes (2)

	Hashing
	Hash Functions
	From Keys to Indices
	Popular Hash-Code Maps
	Hash-Code Maps (2)
	Compression Maps
	Compression Maps (2)
	Compression Maps (3)
	Compression Maps (4)
	Compression Maps (5)
	Universal Hashing
	Universal Hashing (2)
	More on Collisions
	Open Addressing
	Open Addressing (2)
	Linear Probing
	Linear Probing Example
	Lookup in linear probing
	Deletion in Linear Probing
	Deletion (2)
	Double Hashing
	Double Hashing(2)
	Double Hashing Example
	Analysis of Double Hashing
	Analysis (2)
	Analysis(3)
	Expected Number of Probes
	Expected Number of Probes (2)

