Hashing

Hash functions
 Hash-code maps
 Compression maps
 Open addressing
 Linear Probing
 Double hashing

Hash Functions

Need to choose a good hash function

- □ quick to compute
- □ distributes keys uniformly throughout the table
- good hash functions are very rare birthday paradox

How to deal with hashing non-integer keys:
 find some way of turning keys into integers
 eg. remove hyphen in 9635-8904 to get 96358904!
 for a string, add up ASCII values of the characters of your string (e.g., java.lang.String.hashCode())
 then use standard hash function on the integers

From Keys to Indices

- The mapping of keys to indices of a hash table is called a *hash function*
- A hash function is usually the composition of two maps, a hash code map and a compression map.
 - An essential requirement of the hash function is to map equal keys to equal indices
 - A "good" hash function minimizes the probability of collisions
 - *hash code map*: key \rightarrow integer
 - *compression map*: integer $\rightarrow [0, N-1]$

Popular Hash-Code Maps

- Integer cast: for numeric types with 32 bits or less, we can reinterpret the bits of the number as an int
- Component sum: for numeric types with more than 32 bits (e.g., long and double), we can add the 32-bit components.
- Why is the component-sum hash code bad for strings?

Hash-Code Maps (2)

Polynomial accumulation: for strings of a natural language, combine the character values (ASCII or Unicode) a₀a₁ ... a_{n-1} by viewing them as the coefficients of a polynomial:

 $a_0 + a_1 x + \dots + x^{n-1} a_{n-1}$

The polynomial is computed with Horner's rule, ignoring overflows, at a fixed value x:

 $a_0 + x (a_1 + x (a_2 + ... x (a_{n-2} + x a_{n-1}) ...))$

The choice x = 33, 37, 39, or 41 gives at most 6 collisions on a vocabulary of 50,000 English words

Compression Maps

□ Use the remainder

- \square *h*(*k*) = *k* mod *m*, *k* is the key, *m* the size of the table
- \square Need to choose *m*
- $\square m = b^e \text{ (bad)}$
 - □ if m is a power of 2, h(k) gives the e least significant bits of k
 - all keys with the same ending go to the same place
- *m* prime (good)
 - □ helps ensure uniform distribution
 - primes not too close to exact powers of 2

Compression Maps (2)

Example

- hash table for n = 2000 character strings
 we don't mind examining 3 elements
 m = 701
 a prime near 2000/3
 - □but not near any power of 2

Compression Maps (3)

🗆 Use

- $\Box h(k) = \lfloor m \ (k \ A \ \text{mod} \ 1) \ \rfloor$
- k is the key, m the size of the table, and A is a constant
 - 0 < A < 1
- □ The steps involved
 - map 0...k_{max} into 0...k_{max} A
 take the fractional part (mod 1)
 map it into 0...m-1

Compression Maps (4)

Choice of *m* and *A*

- □ value of *m* is not critical, typically use $m = 2^p$
- □ optimal choice of A depends on the characteristics of the data
 □ Knuth says use A = √5 1/2 (conjugate of the golden ratio) Fibonacci hashing

Compression Maps (5)

- Multiply, Add, and Divide (MAD):
- $h(k) = |ak + b| \mod N$
- eliminates patterns provided a is not a multiple of N
- same formula used in linear congruential (pseudo) random number generators

Universal Hashing

- For any choice of hash function, there exists a bad set of identifiers
- A malicious adversary could choose keys to be hashed such that all go into the same slot (bucket)
- Average retrieval time is $\Theta(n)$
- Solution
 - a random hash function
 - choose hash function independently of keys!
 - create a set of hash functions H, from which h can be randomly selected

Universal Hashing (2)

 A collection *H* of hash functions is *universal* if for any randomly chosen *f* from *H* (and two keys *k* and *l*), Pr{*f(k)* = *f(l)*} ≤ 1/*m*

More on Collisions

- A key is mapped to an already occupied table location
 - □ what to do?!?
- Use a collision handling technique
- We've seen Chaining
- Can also use Open Addressing
 - □ Probing
 - Double Hashing

Open Addressing

- □ All elements are stored in the hash table (can fill up!), i.e., $n \le m$
- Each table entry contains either an element or null
- When searching for an element, systematically probe table slots

Open Addressing (2)

□ Modify hash function to take the probe number *i* as the second parameter $h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$

- Hash function, h, determines the sequence of slots examined for a given key
- □ Probe sequence for a given key *k* given by $\langle h(k,0), h(k,1), ..., h(k,m-1) \rangle$ a permutation of $\langle 0,1,...,m-1 \rangle$

Linear Probing

If the current location is used, try the next table location

LinearProbingInsert(k)

if (table is full) error
probe = h(k)
while (table[probe] occupied)
 probe = (probe+1) mod m
table[probe] = k

Uses less memory than chaining as one does not have to store all those links

Slower than chaining since one might have to walk along the table for a long time

Linear Probing Example

h(*k*) = *k* mod 13
insert keys: 18 41 22 44 59 32 31 73

Lookup in linear probing

		41			18	44	59	32	22	31	73	
0	1	2	3	4	5	6	7	8	9	10	11	12

- To search for a key k we go to (k mod 13) and continue looking at successive locations till we find k or encounter an empty location.
- Successful search: To search for 31 we go to (31 mod 13) = 5 and continue onto 6,7,8... till we find 31 at location 10
- Unsuccessful search: To search for 33 we go to (33 mod 5 = 7) and continue till we encounter an empty location (12)

Deletion in Linear Probing

□ To delete key 32 we first search for 32.

- 32 is found in location 8. Suppose we set this location to null.
- Now if we search for 31 we will encounter a null location before seeing 31.
- Lookup procedure would declare that 31 is not present.

Deletion (2)

0 1 2 3 4 5 6 7 8 9 10 11 12

- Instead of setting location 8 to null place a tombstone (a marker) there.
- When lookup encounters a tombstone it ignores it and continues with next location.
- If Insert comes across a tombstone it puts the element at that location and removes the tombstone.
- Too many tombstones degrades lookup performance.
- Rehash if there are too many tombstones.

Double Hashing

Uses two hash functions, h1, h2

- h1(k) is the position in the table where we first check for key k
- h2(k) determines the offset we use when searching for k
- \Box In linear probing h2(k) is always 1.

```
DoubleHashingInsert(k)
if (table is full) error
probe = h1(k); offset = h2(k)
while (table[probe] occupied)
probe = (probe+offset) mod m
table[probe] = k
```

Double Hashing(2)

- If m is prime, we will eventually examine every position in the table
- Many of the same (dis)advantages as linear probing
- Distributes keys more uniformly than linear probing

Double Hashing Example

- $\square h1(k) = k \mod 13$
- $\square h2(k) = 8 (k \mod 8)$
- insert keys: 18 41 22 44 59 32 31 73

Analysis of Double Hashing

- \Box The load factor α is less than 1.
- We assume that every probe looks at a random location in the table.
- \Box 1- α fraction of the table is empty.
- Expected number of probes required to find an empty location (unsuccessful search) is 1/(1- α)

Analysis (2)

Average no of probes for a successful search = average no of probes required to insert all the elements.

To insert an element we need to find an empty location.

inserting	Avg no of probes	Total no of probes
First m/2	<= 2	m
Next m/4	<= 4	m
Next m/8	<= 8	m

Analysis(3)

- No of probes required to insert m/2+m/4+m/8+...+m/2ⁱ elements = number of probes required to leave 2⁻ⁱ fraction of the table empty = m x i.
- □ No of probes required to leave 1- α fraction of the table empty = m log (1- α)
- □ Average no. of probes required to insert n elements is - (m/n) log (1- α) = -(1/ α) log (1- α)

Expected Number of Probes

- Load factor α < 1 for probing
- Analysis of probing uses uniform hashing assumption any permutation is equally likely
 - □ What about linear probing and double hashing?

	un successful	successful
chaining	$O(1+\alpha)$	$O(1+\alpha)$
probing	$O\left(\frac{1}{1-\alpha}\right)$	$O\left(\frac{1}{\alpha}\ln\frac{1}{1-\alpha}\right)$

Expected Number of Probes (2)

