
Dictionaries
the dictionary ADT
binary search
Hashing

Dictionaries
Dictionaries store elements so that they
can be located quickly using keys
A dictionary may hold bank accounts

each account is an object that is identified by
an account number
each account stores a wealth of additional
information

including the current balance,
the name and address of the account holder, and
the history of deposits and withdrawals performed

an application wishing to operate on an
account would have to provide the account
number as a search key

The Dictionary ADT
A dictionary is an abstract model of a database

A dictionary stores key-element pairs
The main operation supported by a dictionary
is searching by key

simple container methods: size(), isEmpty(),
elements()
query methods: findElem(k), findAllElem(k)
update methods: insertItem(k,e), removeElem(k),
removeAllElem(k)
special element: NIL, returned by an
unsuccessful search

The Dictionary ADT

Supporting order (methods min, max,
successor, predecessor) is not required,
thus it is enough that keys are
comparable for equality

The Dictionary ADT
Different data structures to realize dictionaries

arrays, linked lists (inefficient)
Hash table (used in Java...)
Binary trees
Red/Black trees
AVL trees
B-trees

In Java:
java.util.Dictionary – abstract class
java.util.Map – interface

Searching
INPUT
• sequence of numbers
(database)
• a single number (query)

OUTPUT
• index of the found
number or NIL

a1, a2, a3,….,an; q

2 5 4 10 7; 5

2 5 4 10 7; 9

j

2

NIL

Binary Search
Idea: Divide and conquer, a key design technique
narrow down the search range in stages
findElement(22)

A recursive procedure
Algorithm BinarySearch(A, k, low, high)
if low > high then return Nil
else mid ← (low+high) / 2

if k = A[mid] then return mid
elseif k < A[mid] then

return BinarySearch(A, k, low, mid-1)
else return BinarySearch(A, k, mid+1, high)

An iterative procedure
INPUT: A[1..n] – a sorted (non-decreasing) array of

integers, key – an integer.
OUTPUT: an index j such that A[j] = k.

NIL, if ∀j (1 ≤ j ≤ n): A[j] ≠ k

low ←1
high ← n
do

mid ← (low+high)/2
if A[mid] = k then return mid
else if A[mid] > k then high ← mid-1

else low ← mid+1
while low <= high
return NIL

Running Time of Binary Search
The range of candidate items to be searched is
halved after each comparison

In the array-based implementation, access by
rank takes O(1) time, thus binary search runs in
O(log n) time

Searching in an unsorted array
INPUT: A[1..n] – an array of integers, q – an integer.
OUTPUT: an index j such that A[j] = q. NIL, if ∀j (1≤j≤n):

A[j] ≠ q

j ← 1
while j ≤ n and A[j] ≠ q

do j++
if j ≤ n then return j

else return NIL

Worst-case running time: O(n), average-case:
O(n)
We can’t do better. This is a lower bound for the
problem of searching in an arbitrary sequence.

The Problem

T&T is a large phone company, and they
want to provide caller ID capability:
given a phone number, return the caller’s
name
phone numbers range from 0 to r = 108 -1
There are n phone numbers, n << r.
want to do this as efficiently as possible

Using an unordered sequence

searching and removing takes O(n) time
inserting takes O(1) time
applications to log files (frequent
insertions, rare searches and removals)

Using an ordered sequence

searching takes O(log n) time (binary
search)
inserting and removing takes O(n) time
application to look-up tables (frequent
searches, rare insertions and removals)

Other Suboptimal ways
direct addressing: an array indexed by key:

takes O(1) time,
O(r) space where r is the range of numbers
(108)
huge amount of wasted space

(null) (null) Ankur (null) (null)

0000-0000 0000-0000 9635-8904 0000-0000 0000-0000

Another Solution
Can do better, with a Hash table -- O(1) expected
time, O(n+m) space, where m is table size
Like an array, but come up with a function to map
the large range into one which we can manage

e.g., take the original key, modulo the (relatively
small) size of the array, and use that as an index
Insert (9635-8904, Ankur) into a hashed array
with, say, five slots. 96358904 mod 5 = 4

(null) (null) (null) (null) Ankur

0 1 2 3 4

An Example

Let keys be entry no’s of students in
CSL201. eg. 2004CS10110.
There are 100 students in the class. We
create a hash table of size, say 100.
Hash function is, say, last two digits.
Then 2004CS10110 goes to location 10.
Where does 2004CS50310 go?
Also to location 10. We have a collision!!

Collision Resolution
How to deal with two keys which hash to the
same spot in the array?
Use chaining

Set up an array of links (a table), indexed by
the keys, to lists of items with the same key

Most efficient (time-wise) collision resolution
scheme

Collision resolution (2)

To find/insert/delete an element
using h, look up its position in table T
Search/insert/delete the element in the
linked list of the hashed slot

Analysis of Hashing
An element with key k is stored in slot
h(k) (instead of slot k without hashing)
The hash function h maps the universe U
of keys into the slots of hash table
T[0...m-1]

Assume time to compute h(k) is Θ(1)
{ }: 0,1,..., 1h U m→ −

Analysis of Hashing(2)
An good hash function is one which distributes
keys evenly amongst the slots.
An ideal hash function would pick a slot,
uniformly at random and hash the key to it.
However, this is not a hash function since we
would not know which slot to look into when
searching for a key.
For our analysis we will use this simple uniform
hash function
Given hash table T with m slots holding n
elements, the load factor is defined as α=n/m

Analysis of Hashing(3)

Unsuccessful search
element is not in the linked list
Simple uniform hashing yields an average
list length α = n/m
expected number of elements to be
examined α
search time O(1+α) (includes computing
the hash value)

Analysis of Hashing (4)

Successful search
assume that a new element is inserted at the
end of the linked list
upon insertion of the i-th element, the expected
length of the list is (i-1)/m
in case of a successful search, the expected
number of elements examined is 1 more that the
number of elements examined when the sought-
for element was inserted!

Analysis of Hashing (5)
The expected number of elements examined is
thus

Considering the time for computing the hash
function, we obtain

()

()
1 1

1 1 11 1 1

111
2

11
2

11
2 2

11
2 2

n n

i i

i i
n m nm

n n
nm
n

m
n
m m

m
α

= =

−⎛ ⎞+ = + −⎜ ⎟
⎝ ⎠

−
= + ⋅

−
= +

= + −

+ −

∑ ∑

(2 / 2 1/ 2) (1)mα αΘ + − = Θ +

Analysis of Hashing (6)

Assuming the number of hash table slots is
proportional to the number of elements in
the table
n=O(m)
α = n/m = O(m)/m = O(1)
searching takes constant time on average
insertion takes O(1) worst-case time
deletion takes O(1) worst-case time when
the lists are doubly-linked

	Dictionaries
	Dictionaries
	The Dictionary ADT
	The Dictionary ADT
	The Dictionary ADT
	Searching
	Binary Search
	A recursive procedure
	An iterative procedure
	Running Time of Binary Search
	Searching in an unsorted array
	The Problem
	Using an unordered sequence
	Using an ordered sequence
	Other Suboptimal ways
	Another Solution
	An Example
	Collision Resolution
	Collision resolution (2)
	Analysis of Hashing
	Analysis of Hashing(2)
	Analysis of Hashing(3)
	Analysis of Hashing (4)
	Analysis of Hashing (5)
	Analysis of Hashing (6)

