Dictionaries

□ the dictionary ADT

- binary search
- Hashing

Dictionaries

- Dictionaries store elements so that they can be located quickly using keys
- A dictionary may hold bank accounts
 - each account is an object that is identified by an account number
 - each account stores a wealth of additional information
 - \Box including the current balance,
 - the name and address of the account holder, and
 the history of deposits and withdrawals performed
 - an application wishing to operate on an account would have to provide the account number as a search key

The Dictionary ADT

- □ A dictionary is an abstract model of a database
 - □ A dictionary stores key-element pairs
 - The main operation supported by a dictionary is searching by key
- simple container methods: size(), isEmpty(),
 elements()
- query methods: findElem(k), findAllElem(k)
- update methods: insertItem(k,e), removeElem(k), removeAllElem(k)
- special element: NIL, returned by an unsuccessful search

The Dictionary ADT

 Supporting order (methods *min, max,* successor, predecessor) is not required, thus it is enough that keys are comparable for equality

The Dictionary ADT

Different data structures to realize dictionaries

- arrays, linked lists (inefficient)
- □ Hash table (used in Java...)
- □ Binary trees
- Red/Black trees
- □ AVL trees
- B-trees
- 🗆 In Java:

java.util.Dictionary – abstract class
 java.util.Map – interface

Searching

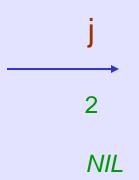
INPUT

- sequence of numbers (database)
- a single number (query)

$$a_1, a_2, a_3, \dots, a_n; q$$

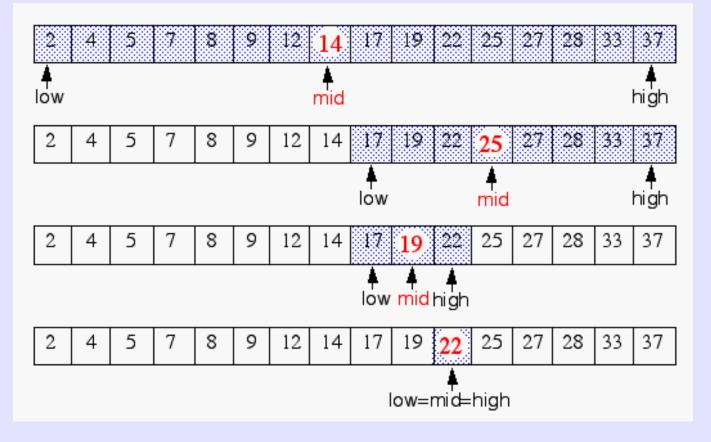
2 5 4 10 7; 5
2 5 4 10 7; 9

OUTPUT • index of the found number or *NIL*



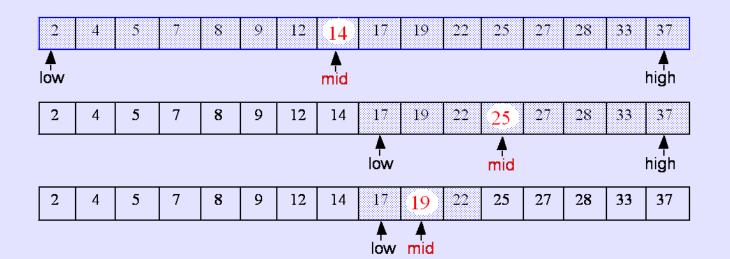
Binary Search

Idea: *Divide and conquer*, a key design technique
 narrow down the search range in stages
 findElement(22)



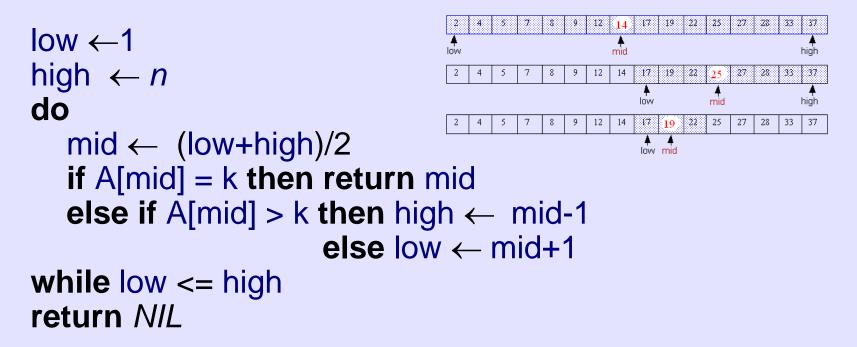
A recursive procedure

Algorithm BinarySearch(A, k, low, high) if low > high then return Nil else mid \leftarrow (low+high) / 2 if k = A[mid] then return mid elseif k < A[mid] then return BinarySearch(A, k, low, mid-1) else return BinarySearch(A, k, mid+1, high)



An iterative procedure

```
INPUT: A[1..n] – a sorted (non-decreasing) array of integers, key – an integer.
OUTPUT: an index j such that A[j] = k.
NIL, if \forall j (1 \le j \le n): A[j] \ne k
```



Running Time of Binary Search

The range of candidate items to be searched is halved after each comparison

comparison	search range
0	n
1	n/2
2	<i>n</i> /4
2^i	$n/2^i$
$\log_2 n$	1

In the array-based implementation, access by rank takes O(1) time, thus binary search runs in O(log n) time

Searching in an unsorted array

INPUT: A[1..n] – an array of integers, q – an integer. OUTPUT: an index j such that A[j] = q. NIL, if $\forall j$ (1 $\leq j \leq n$): A[j] \neq q

```
j ← 1
while j ≤ n and A[j] ≠ q
do j++
if j ≤ n then return j
else return NIL
```

- Worst-case running time: O(n), average-case: O(n)
- □ We can't do better. This is a *lower bound* for the problem of searching in an arbitrary sequence.

The Problem

- T&T is a large phone company, and they want to provide caller ID capability:
- given a phone number, return the caller's name
- \Box phone numbers range from 0 to r = 10⁸ 1
- \Box There are n phone numbers, n << r.
- □ want to do this as efficiently as possible

Using an unordered sequence

unordered sequence

searching and removing takes O(n) time
 inserting takes O(1) time
 applications to log files (frequent insertions, rare searches and removals)

Using an ordered sequence

array-based ordered sequence (assumes keys can be ordered)

- searching takes O(log n) time (binary search)
- □ inserting and removing takes O(n) time
- application to look-up tables (frequent searches, rare insertions and removals)

Other Suboptimal ways

direct addressing: an array indexed by key: □ takes O(1) time,

- \Box O(*r*) space where r is the range of numbers (10⁸)
- huge amount of wasted space

(null)	(null)	Ankur	(null)	(null)
0000-0000	0000-0000	9635-8904	0000-0000	0000-0000

Another Solution

- Can do better, with a Hash table -- O(1) expected time, O(n+m) space, where m is table size
- Like an array, but come up with a function to map the large range into one which we can manage
 - e.g., take the original key, modulo the (relatively small) size of the array, and use that as an index
 - □ Insert (9635-8904, Ankur) into a hashed array with, say, five slots. 96358904 mod 5 = 4

(null)	(null)	(null)	(null)	Ankur
0	1	2	3	4

An Example

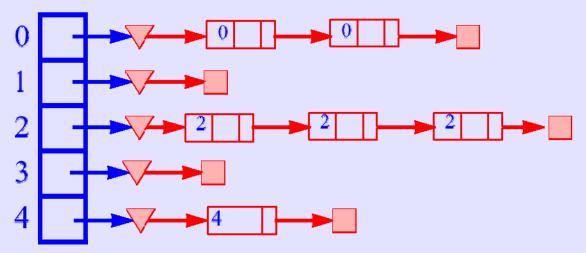
- Let keys be entry no's of students in CSL201. eg. 2004CS10110.
- There are 100 students in the class. We create a hash table of size, say 100.
- Hash function is, say, last two digits.
- Then 2004CS10110 goes to location 10.
- Where does 2004CS50310 go?
- Also to location 10. We have a collision!!

Collision Resolution

How to deal with two keys which hash to the same spot in the array?

Use chaining

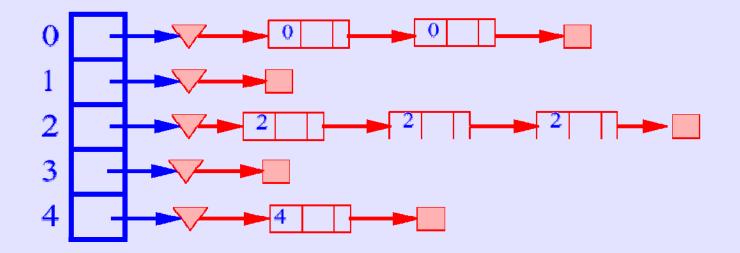
Set up an array of links (a table), indexed by the keys, to lists of items with the same key



Most efficient (time-wise) collision resolution scheme

Collision resolution (2)

To find/insert/delete an element
 using *h*, look up its position in table *T* Search/insert/delete the element in the linked list of the hashed slot



Analysis of Hashing

- An element with key k is stored in slot h(k) (instead of slot k without hashing)
- The hash function h maps the universe U of keys into the slots of hash table T[0...m-1]

 $h: U \to \{0, 1, \dots, m-1\}$

 \Box Assume time to compute h(k) is $\Theta(1)$

Analysis of Hashing(2)

- An good hash function is one which distributes keys evenly amongst the slots.
- An ideal hash function would pick a slot, uniformly at random and hash the key to it.
- However, this is not a hash function since we would not know which slot to look into when searching for a key.
- For our analysis we will use this simple uniform hash function
- □ Given hash table *T* with *m* slots holding *n* elements, the **load factor** is defined as $\alpha = n/m$

Analysis of Hashing(3)

- Unsuccessful search
- element is not in the linked list
- □ Simple uniform hashing yields an average list length $\alpha = n/m$
- \square expected number of elements to be examined α
- search time O(1+α) (includes computing the hash value)

Analysis of Hashing (4)

Successful search

- assume that a new element is inserted at the end of the linked list
- upon insertion of the i-th element, the expected length of the list is (i-1)/m
- in case of a successful search, the expected number of elements examined is 1 more that the number of elements examined when the soughtfor element was inserted!

Analysis of Hashing (5)

The expected number of elements examined is

thus

$$\frac{1}{n} \sum_{i=1}^{n} \left(1 + \frac{i-1}{m} \right) = 1 + \frac{1}{nm} \sum_{i=1}^{n} (i-1)$$

$$= 1 + \frac{1}{nm} \cdot \frac{(n-1)n}{2}$$

$$= 1 + \frac{n-1}{2m}$$

$$= 1 + \frac{n}{2m} - \frac{1}{2m}$$

$$1 + \frac{\alpha}{2} - \frac{1}{2m}$$

Considering the time for computing the hash function, we obtain

$$\Theta(2+\alpha/2-1/2m) = \Theta(1+\alpha)$$

Analysis of Hashing (6)

Assuming the number of hash table slots is proportional to the number of elements in the table

- □ n=O(m)
- $\Box \alpha = n/m = O(m)/m = O(1)$
- searching takes constant time on average
- □ insertion takes O(1) worst-case time
- deletion takes O(1) worst-case time when the lists are doubly-linked