
Queues and Linked Lists
Queues
Linked Lists
Double-Ended Queues

Queues
A queue differs from a stack in that its insertion
and removal routines follows the first-in-first-out
(FIFO) principle.
Elements may be inserted at any time, but only
the element which has been in the queue the
longest may be removed.
Elements are inserted at the rear (enqueued) and
removed from the front (dequeued)

Front RearQueue

Queues (2)
The queue supports three fundamental
methods:

New():ADT – Creates an empty queue
Enqueue(S:ADT, o:element):ADT - Inserts object o
at the rear of the queue
Dequeue(S:ADT):ADT - Removes the object from the
front of the queue; an error occurs if the queue is
empty
Front(S:ADT):element - Returns, but does not
remove, the front element; an error occurs if the
queue is empty

Queues (3)
These support methods should also be
defined:

Size(S:ADT):integer
IsEmpty(S:ADT):boolean

Axioms:
Front(Enqueue(New(), v)) = v
Dequeque(Enqueue(New(), v)) = New()
Front(Enqueue(Enqueue(Q, w), v)) =
Front(Enqueue(Q, w))
Dequeue(Enqueue(Enqueue(Q, w), v)) =
Enqueue(Dequeue(Enqueue(Q, w)), v)

An Array Implementation
Create a queue using an array in a circular
fashion
A maximum size N is specified.
The queue consists of an N-element array
Q and two integer variables:

f, index of the front element (head – for
dequeue)
r, index of the element after the rear one (tail
– for enqueue)

An Array Implementation (2)
“wrapped around” configuration

what does f=r mean?

An Array Implementation (3)
Pseudo code

Algorithm size()
return (N-f+r) mod N

Algorithm isEmpty()
return (f=r)

Algorithm front()
if isEmpty() then
return Queueemptyexception
return Q[f]

Algorithm dequeue()
if isEmpty() then
return Queueemptyexception
Q[f] ← null
f ←(f+1)modN

Algorithm enqueue(o)
if size = N - 1 then
return Queuefullexception
Q[r] ← o
r ← (r +1)modN

Nodes (data, pointer) connected in a chain by
links

The head of the list is the front of the queue, the
tail of the list is the rear of the queue. Why not
the opposite?

Implementing Queue with Linked List

Dequeue - advance head reference

Inserting at the head is just as easy

Linked List Implementation

Enqueue - create a new node at the tail

chain it and move the tail reference

How about removing at the tail?

Linked List Implementation (2)

Double-Ended Queue

A double-ended queue, or deque, supports
insertion and deletion from the front and back
The deque supports six fundamental methods

InsertFirst(S:ADT, o:element):ADT - Inserts e at the
beginning of deque
InsertLast(S:ADT, o:element):ADT - Inserts e at end of
deque
RemoveFirst(S:ADT):ADT – Removes the first element
RemoveLast(S:ADT):ADT – Removes the last element
First(S:ADT):element and Last(S:ADT):element –
Returns the first and the last elements

Doubly Linked Lists
Deletions at the tail of a singly linked list cannot be
done in constant time
To implement a deque, we use a doubly linked
list

A node of a doubly linked list has a next and a
prev link
Then, all the methods of a deque have a constant
(that is, O(1)) running time.

Doubly Linked Lists (2)
When implementing a doubly linked lists, we add
two special nodes to the ends of the lists: the
header and trailer nodes

The header node goes before the first list element. It
has a valid next link but a null prev link.
The trailer node goes after the last element. It has a
valid prev reference but a null next reference.

The header and trailer nodes are sentinel or
“dummy” nodes because they do not store
elements

Stacks with Deques

Implementing ADTs using
implementations of other ADTs as building
blocks

Stack Method Deque
Implementation

size() size()
isEmpty() isEmpty()

top() last()
push(o) insertLast(o)
pop() removeLast()

Queues with Deques

Queue Method Deque
Implementation

size() size()
isEmpty() isEmpty()

front() first()
enqueue(o) insertLast(o)
dequeue() removeFirst()

The Adaptor Pattern

Using a deque to implement a stack or queue is an
example of the adaptor pattern. Adaptor patterns
implement a class by using methods of another class

In general, adaptor classes specialize general
classes

Two such applications
Specialize a general class by changing some methods eg

implementing a stack with a deque.
Specialize the types of objects used by a general class eg

defining an IntegerArrayStack class that adapts ArrayStack
to only store integers.

Circular Lists
No end and no beginning of the list, only one
pointer as an entry point
Circular doubly linked list with a sentinel is an
elegant implementation of a stack or a queue

Sequences
Vectors
Positions
Lists
General Sequences

The Vector ADT

A sequence S (with n elements) that supports the following
methods:
elemAtRank(r): Return the element of S with rank r; an
error occurs if r < 0 or r > n -1
replaceAtRank(r,e): Replace the element at rank r with e
and return the old element; an error condition occurs if
r < 0 or r > n - 1
insertAtRank(r,e): Insert a new element into S which will
have rank r; an error occurs if r< 0 or r > n
removeAtRank(r): Remove from S the element at rank r;
an error occurs if r < 0 or r > n - 1

Array-Based Implementation
Algorithm insertAtRank(r,e):
for i = n – 1 downto r do

S[i+1] ← S[i]
S[r] ← e
n ← n + 1

Algorithm removeAtRank(r):
e ← S[r]
for i = r to n - 2 do

S[i] ← S[i + 1]
n ← n - 1
return

Array-Based Implementation (contd.)

Time complexity of the various methods:

Implem. with a Doubly Linked List
the list before insertion

creating a new node for
insertion:

the list after insertion

public void insertAtRank (int rank, Object element)
throws BoundaryViolationException {

if (rank < 0 || rank > size())
throw new BoundaryViolationException(“invalid rank”);

DLNode next = nodeAtRank(rank);
// the new node will be right before this

DLNode prev = next.getPrev();
// the new node will be right after this

DLNode node = new DLNode(element, prev, next);
// new node knows about its next & prev.

// Now we tell next & prev about the new node.
next.setPrev(node);
prev.setNext(node);
size++;
}

Java Implementation

Implementation with a Doubly Linked
List

the list before
deletion

deleting a node

after deletion

Java Implementation
public Object removeAtRank (int rank)

throws BoundaryViolationException {
if (rank < 0 || rank > size()-1)

throw new BoundaryViolationException(“Invalid rank.”);
DLNode node = nodeAtRank(rank); // node to be removed
DLNode next = node.getNext(); // node before it
DLNode prev = node.getPrev(); // node after it
prev.setNext(next);
next.setPrev(prev);
size--;
return node.getElement();

// returns the element of the deleted node
}

Java Implementation (contd.)
private DLNode nodeAtRank (int rank) {

//auxiliary method to find node of element with given rank
DLNode node;
if (rank <= size()/2) { //scan forward from head

node = header.getNext();
for (int i=0; i < rank; i++)

node = node.getNext();
} else { //scan backward from the tail

node = trailer.getPrev();
for (int i=0; i < size()-rank-1 ; i++)

node = node.getPrev();
}
return node;
}

Nodes
Linked lists support the efficient execution of
node-based operations:
removeAtNode(Node v) and
insertAfterNode(Node v, Object e), would be
O(1).
However, node-based operations are not
meaningful in an array-based implementation
because there are no nodes in an array.
Nodes are implementation-specific.
Dilemma:

If we do not define node based operations, we are not
taking full advantage of doubly-linked lists.
If we do define them, we violate the generality of ADTs.

From Nodes to Positions

We introduce the Position ADT
Intuitive notion of “place” of an element.
Positions have only one method:
element(): Returns the element at this
position
Positions are defined relative to other
positions (before/after relation)
Positions are not tied to an element or
rank

The List ADT
ADT with position-based methods
generic methods: size(), isEmpty()
query methods: isFirst(p), isLast(p)
accessor methods: first(), last(), before(p), after(p)
update methods

swapElements(p,q), replaceElement(p,e)
insertFirst(e), insertLast(e)
insertBefore(p,e), insertAfter(p,e)
remove(p)

each method takes O(1) time if implemented with
a doubly linked list

The Sequence ADT
Combines the Vector
and List ADT (multiple
inheritance)
Adds methods that
bridge between ranks
and positions

atRank(r) returns a
position
rankOf(p) returns an
integer rank

An array-based implementation needs to use
objects to represent the positions

Comparison of Sequence
Implementations

Iterators
Abstraction of the process of scanning through a
collection of elements
Encapsulates the notions of “place” and “next”
Extends the position ADT
Generic and specialized iterators
ObjectIterator: hasNext(), nextObject(), object()
PositionIterator: nextPosition()
Useful methods that return iterators: elements(),
positions()

	Queues and Linked Lists
	Queues
	Queues (2)
	Queues (3)
	An Array Implementation
	An Array Implementation (2)
	An Array Implementation (3)
	Implementing Queue with Linked List
	Linked List Implementation
	Linked List Implementation (2)
	Double-Ended Queue
	Doubly Linked Lists
	Doubly Linked Lists (2)
	Slide Number 14
	Stacks with Deques
	Queues with Deques
	The Adaptor Pattern
	Circular Lists
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Sequences
	The Vector ADT
	Array-Based Implementation
	Array-Based Implementation (contd.)
	Implem. with a Doubly Linked List
	Slide Number 27
	Implementation with a Doubly Linked List
	Java Implementation
	Java Implementation (contd.)
	Nodes
	From Nodes to Positions
	The List ADT
	The Sequence ADT
	Comparison of Sequence Implementations
	Iterators

