
1

Data Structures for Graphs

Edge list
Adjacency lists
Adjacency matrix

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 41 1 TW 45UA 120AA 49 AA 903AA 1387

E

V

2

Data Structures for Graphs
A Graph! How can we represent it?
To start with, we store the vertices and the edges into two
containers, and each edge object has references to the
vertices it connects.

Additional structures can be used to perform efficiently the methods
of the Graph ADT

3

Edge List
The edge list structure simply stores the vertices and
the edges in two unsorted sequences.
Easy to implement.
Finding the edges incident on a given vertex is
inefficient since it requires examining the entire edge
sequence

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E

V

4

Performance of Edge List
Operation Time

size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)

vertices O(n)
edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)
endVertices, opposite, origin, destination, isDirected O(1)
incidentEdges, inIncidentEdges, outIncidentEdges, adjacent
Vertices , inAdjacentVertices, outAdjacentVertices,areAdjacent,
degree, inDegree, outDegree

O(m)

insertVertex, insertEdge, insertDirectedEdge,
removeEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

O(1)

removeVertex O(m)

5

Adjacency List (traditional)
adjacency list of a vertex v: sequence of vertices
adjacent to v
represent the graph by the adjacency lists of all the
vertices

a b

c

d e

b

b

c

c

c

d

a e

a d e

a e

d

Space =
Θ (N + Σ deg(v)) = Θ(N + M)

6

Adjacency List (modern)
The adjacency list structure extends the edge list
structure by adding adjacency lists to each vertex.

in out in out in out in out in out in out in out

NW 35

DL 247

AA 49

AA 41 1

UA 120 AA1387

AA 523

UA 877

DL335

AA 49

NW 35 AA1387

AA 903

TW 45

DL 247

AA 903

AA523

AA 41 1

UA 120

DL 335

UA 877 TW 45

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 41 1 TW 45UA 120AA 49 AA 903AA 1387

The space requirement is O(n + m).

7

Performance of the Adjacency List Structure
size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination, isDirected, degree,
inDegree, outDegree

O(1)

incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v),
adjacentVertices(v), inAdjacentVertices(v),
outAdjacentVertices(v)

O(deg(v))

areAdjacent(u, v) O(min(deg(
u),deg(v)))

insertVertex, insertEdge, insertDirectedEdge, removeEdge,
makeUndirected, reverseDirection,

O(1)

removeVertex(v) O(deg(v))

8

Adjacency Matrix (traditional)

matrix M with entries for all pairs of vertices
M[i,j] = true means that there is an edge (i,j) in the graph.
M[i,j] = false means that there is no edge (i,j) in the graph.
There is an entry for every possible edge, therefore:

Space = Θ(N2)

F T T T F
T F F F T
T F F T T
T F T F T
F T T T F

a b

c

d e

a b c d e
a
b
c
d
e

9

Adjacency Matrix (modern)

The adjacency
matrix structures
augments the edge
list structure with a
matrix where each
row and column
corresponds to a
vertex.

10

Performance of Adjacency Matrix

11

Graph Searching Algorithms
Systematic search of every edge and vertex of
the graph
Graph G = (V,E) is either directed or undirected
Today's algorithms assume an adjacency list
representation
Applications

Compilers
Graphics
Maze-solving
Mapping
Networks: routing, searching, clustering, etc.

12

Breadth First Search
A Breadth-First Search (BFS) traverses a
connected component of a graph, and in doing
so defines a spanning tree with several useful
properties
BFS in an undirected graph G is like wandering
in a labyrinth with a string.
The starting vertex s, it is assigned a distance 0.
In the first round, the string is unrolled the length
of one edge, and all of the vertices that are only
one edge away from the anchor are visited
(discovered), and assigned distances of 1

13

Breadth-First Search (2)

In the second round, all the new vertices that
can be reached by unrolling the string 2 edges
are visited and assigned a distance of 2
This continues until every vertex has been
assigned a level
The label of any vertex v corresponds to the
length of the shortest path (in terms of edges)
from s to v

14

BFS Example

0∞

∞ ∞ ∞ ∞

r s u
∞

t
∞

wv yx
0
sQ

01

∞ 1 ∞ ∞

r s u
∞

t
∞

wv yx
1
w

1
rQ

01

∞ 1 2 ∞

r s u
∞

t
2

wv yx
2
t

1
r

2
xQ

01

2 1 2 ∞

r s u
∞

t
2

wv yx
2
x

2
t

2
vQ

15

BFS Example

01

2 1 2 ∞

r s u
3

t
2

wv yx
2
v

2
x

3
uQ

01

2 1 2 3

r s u
3

t
2

wv yx
3
u

2
v

3
yQ

01

2 1 2 3

r s u
3

t
2

wv yx
3
y

3
uQ

01

2 1 2 3

r s u
3

t
2

wv yx
3
yQ

16

BFS Example: Result

01

2 1 2 3

r s u
3

t
2

wv yx

-Q

17

BFS - A Graphical representation

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

d)c)

b)a)

18

More BFS

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3

19

BFS Algorithm
BFS(G,s)
01 for each vertex u ∈ V[G]-{s}
02 color[u] ← white
03 d[u] ← ∞
04 π[u] ← NIL
05 color[s] ← gray
06 d[s] ← 0
07 π[u] ← NIL
08 Q ← {s}
09 while Q ≠ ∅ do
10 u ← head[Q]
11 for each v ∈ Adj[u] do
12 if color[v] = white then
13 color[v] ← gray
14 d[v] ← d[u] + 1
15 π[v] ← u
16 Enqueue(Q,v)
17 Dequeue(Q)
18 color[u] ← black

Init all
vertices

Init BFS
with s

Handle all u’s
children
before
handling any
children of
children

20

BFS Running Time

Given a graph G = (V,E)
Vertices are enqueued if there color is white
Assuming that en- and dequeuing takes O(1) time the
total cost of this operation is O(V)
Adjacency list of a vertex is scanned when the vertex
is dequeued (and only then…)
The sum of the lengths of all lists is Θ(E).
Consequently, O(E) time is spent on scanning them
Initializing the algorithm takes O(V)

Total running time O(V+E) (linear in the size of
the adjacency list representation of G)

21

BFS Properties
Given an undirected graph G = (V,E), BFS
discovers all vertices reachable from a
source vertex s
For each vertex v at level i, the path of the BFS
tree T between s and v has i edges, and any
other path of G between s and v has at least i
edges.
If (u, v) is an edge then the level numbers of u
and v differ by at most one.
It computes the shortest distance to all
reachable vertices

22

Breadth First Tree
Predecessor subgraph of G

Gπ is a breadth-first tree
Vπ consists of the vertices reachable from s, and
for all v ∈ Vπ, there is a unique simple path from s to v
in Gπ that is also a shortest path from s to v in G

The edges in Gπare called tree edges
For any vertex v reachable from s, the path in the
breadth first tree from s to v, corresponds to a
shortest path in G

{ } { }
{ }

(,)
: []

([],) : { }

G V E
V v V v NIL s

E v v E v V s

π π π

π

π π

=

= ∈ π ≠ ∪

= π ∈ ∈ −

23

24

25

26

27

	Data Structures for Graphs
	Data Structures for Graphs
	Edge List
	Performance of Edge List
	Adjacency List (traditional)
	Adjacency List (modern)
	Performance of the Adjacency List Structure
	Adjacency Matrix (traditional)
	Adjacency Matrix (modern)
	Performance of Adjacency Matrix
	Graph Searching Algorithms
	Breadth First Search
	Breadth-First Search (2)
	BFS Example
	BFS Example
	BFS Example: Result
	BFS - A Graphical representation
	More BFS
	BFS Algorithm
	BFS Running Time
	BFS Properties
	Breadth First Tree
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

