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Data Structures for Graphs

Edge list
Adjacency lists
Adjacency matrix

DFWBOS ORDMIA SFOJFKLAX

DL  247 DL 335 UA 877NW  35 AA 523 AA  41 1 TW  45UA  120AA  49 AA  903AA  1387

E

V



2

Data Structures for Graphs
A Graph! How can we represent it?
To start with, we store the vertices and the edges into two 
containers, and each edge object has references to the 
vertices it connects.

Additional structures can be used to perform efficiently the methods 
of the Graph ADT
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Edge List
The edge list structure simply stores the vertices and 
the edges in two unsorted sequences.
Easy to implement.
Finding the edges incident on a given vertex is 
inefficient since it requires examining the entire edge 
sequence
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Performance of Edge List 
Operation Time

size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)

vertices O(n)
edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)
endVertices, opposite, origin, destination, isDirected O(1)
incidentEdges, inIncidentEdges, outIncidentEdges, adjacent 
Vertices , inAdjacentVertices, outAdjacentVertices,areAdjacent, 
degree, inDegree, outDegree

O(m)

insertVertex, insertEdge, insertDirectedEdge,
removeEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

O(1)

removeVertex O(m)
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Adjacency List (traditional)
adjacency list of a vertex v: sequence of vertices 
adjacent to v
represent the graph by the adjacency lists of all the 
vertices
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Space =
Θ (N + Σ deg(v)) = Θ(N + M)
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Adjacency List (modern)
The adjacency list structure extends the edge list 
structure by adding adjacency lists to each vertex.
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The space requirement is O(n + m).
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Performance of the Adjacency List Structure
size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination, isDirected, degree, 
inDegree, outDegree

O(1)

incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v), 
adjacentVertices(v), inAdjacentVertices(v), 
outAdjacentVertices(v) 

O(deg(v))

areAdjacent(u, v) O(min(deg(
u),deg(v)))

insertVertex, insertEdge, insertDirectedEdge, removeEdge, 
makeUndirected, reverseDirection, 

O(1)

removeVertex(v) O(deg(v))
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Adjacency Matrix (traditional)

matrix M with entries for all pairs of vertices
M[i,j] = true means that there is an edge (i,j) in the graph.
M[i,j] = false means that there is no edge (i,j) in the graph.
There is an entry for every possible edge, therefore:

Space = Θ(N2)
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Adjacency Matrix (modern)

The adjacency 
matrix structures 
augments the edge 
list structure with a 
matrix where each 
row and column 
corresponds to a 
vertex.
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Performance of Adjacency Matrix 
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Graph Searching Algorithms
Systematic search of every edge and vertex of 
the graph
Graph G = (V,E) is either directed or undirected
Today's algorithms assume an adjacency list 
representation
Applications

Compilers
Graphics
Maze-solving
Mapping
Networks: routing, searching, clustering, etc.
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Breadth First Search
A Breadth-First Search (BFS) traverses a
connected component of a graph, and in doing 
so defines a spanning tree with several useful 
properties
BFS in an undirected graph G is like wandering 
in a labyrinth with a string.
The starting vertex s, it is assigned a distance 0.
In the first round, the string is unrolled the length
of one edge, and all of the vertices that are only 
one edge away from the anchor are visited
(discovered), and assigned distances of 1
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Breadth-First Search (2)

In the second round, all the new vertices that 
can be reached by unrolling the string 2 edges 
are visited and assigned a distance of 2
This continues until every vertex has been
assigned a level
The label of any vertex v corresponds to the 
length of the shortest path (in terms of edges) 
from s to v
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BFS Example
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BFS Example
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BFS Example: Result
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BFS - A Graphical representation
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More BFS
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BFS Algorithm
BFS(G,s)
01 for each vertex u ∈ V[G]-{s}
02 color[u] ← white
03 d[u] ← ∞
04 π[u] ← NIL
05 color[s] ← gray
06 d[s] ← 0
07 π[u] ← NIL
08 Q ← {s}
09 while Q ≠ ∅ do
10 u ← head[Q]
11 for each v ∈ Adj[u] do
12 if color[v] = white then
13 color[v] ← gray
14 d[v] ← d[u] + 1
15 π[v] ← u
16 Enqueue(Q,v)
17 Dequeue(Q)
18 color[u] ← black

Init all 
vertices

Init BFS 
with s

Handle all u’s 
children 
before 
handling any 
children of 
children
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BFS Running Time

Given a graph G = (V,E)
Vertices are enqueued if there color is white
Assuming that en- and dequeuing takes O(1) time the 
total cost of this operation is O(V)
Adjacency list of a vertex is scanned when the vertex 
is dequeued (and only then…)
The sum of the lengths of all lists is Θ(E). 
Consequently, O(E) time is spent on scanning them
Initializing the algorithm takes O(V)

Total running time O(V+E) (linear in the size of 
the adjacency list representation of G)
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BFS Properties
Given an undirected  graph G = (V,E), BFS 
discovers all vertices reachable from a 
source vertex s
For each vertex v at level i, the path of the BFS 
tree T between s and v has i edges, and any 
other path of G between s and v has at least i 
edges. 
If (u, v) is an edge then the level numbers of u 
and v differ by at most one.
It computes the shortest distance to all 
reachable vertices
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Breadth First Tree
Predecessor subgraph of G

Gπ is a breadth-first tree
Vπ consists of the vertices reachable from s, and
for all v ∈ Vπ, there is a unique simple path from s to v
in Gπ that is also a shortest path from s to v in G

The edges in Gπare called tree edges
For any vertex v reachable from s, the path in the 
breadth first tree from s to v, corresponds to a 
shortest path in G
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