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Graphs
Definitions
Examples
The Graph ADT



2

What is a Graph?
A graph G = (V,E) is composed of:

V: set of vertices
E: set of edges connecting the vertices in V

An edge e = (u,v) is a pair of vertices
Example:

a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}
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Applications

electronic circuits

find the path of least resistance to CS201
networks (roads, flights, communications)

CS201

start
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more examples
scheduling (project planning)

wake up

eat

work

cs201 meditation

more cs201

play

sleep

dream of cs201

cs201 program

A typical student day
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Graph Terminology
adjacent vertices:  vertices connected by an edge
degree (of a vertex): # of adjacent vertices

What is the sum of the degrees of all vertices?
Twice the number of edges, since adjacent 
vertices each count the adjoining edge, it will be 
counted twice 3

3 3

3

2
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Graph Terminology(2)
path:   sequence of vertices v1,v2,. . .vk
such that consecutive vertices vi and vi+1
are adjacent. 

a b

c

d e

a b

c

d e
a b e d c e b e d c
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Graph Terminology (3)

simple path:  no repeated 
vertices

cycle:   simple path, except 
that the last vertex is the 
same as the first vertex

a b

c

d e

b e c
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More Terminology

connected not connected

connected graph: any two vertices are 
connected by some path
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More Terminology(2)
subgraph: subset of vertices and edges forming 
a graph

G subgraph of G
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More Terminology(3)

connected component: maximal connected 
subgraph. E.g., the graph below has 3 
connected components.
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Yet Another Terminology Slide!
(free) tree -
connected graph 
without cycles
forest - collection 
of trees
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Connectivity
Let n = #vertices, and m = #edges
Complete graph: one in which all pairs of 
vertices are adjacent
How many edges does a complete graph have?

There are n(n-1)/2 pairs of vertices  and so   
m = n(n -1)/2.

Therefore, if a graph is not complete,                
m < n(n -1)/2
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More Connectivity

n = #vertices
m = #edges

For a tree m = n – 1
If m < n - 1, G is not 
connected
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Spanning Tree
A spanning tree of G is a subgraph which is a tree and 
which contains all vertices of G

Failure on any edge disconnects system (least fault 
tolerant)
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The Bridges of Koenigsberg

Suppose you are a postman, and you didn’t want 
to retrace your steps.
In 1736, Euler proved that this is not possible
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Graph Model (with parallel edges)

Eulerian Tour:  path 
that traverses every 
edge exactly once 
and returns to the first 
vertex
Euler’s Theorem: A 
graph has a Eulerian 
Tour if and only if all 
vertices have even 
degree
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The Graph ADT
The Graph ADT is a positional container whose positions 
are the vertices and the edges of the graph.

size() Return the number of vertices + number of edges of G.
isEmpty()
elements()
positions()
swap()
replaceElement()

Notation: Graph G; Vertices v, w; Edge e; Object o
numVertices() Return the number of vertices of G.
numEdges() Return the number of edges of G.
vertices() Return an enumeration of the vertices of G.
edges() Return an enumeration of the edges of G.
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The Graph ADT (contd.)
directedEdges() enumeration of all directed edges in G.
undirectedEdges() enumeration of all undirected edges in G.
incidentEdges(v) enumeration of all edges incident on v.
inIncidentEdges(v) enumeration of all edges entering  v.
outIncidentEdges(v) enumeration of all edges leaving v.
opposite(v, e) an endpoint of e distinct from v
degree(v) the degree of v.
inDegree(v) the in-degree of v.
outDegree(v) the out-degree of v.



19

More Methods ...
adjacentVertices(v) enumeration of vertices adjacent to v.
inAdjacentVertices(v) enumeration of vertices adjacent to v 
along incoming edges.
outAdjacentVertices(v) enumeration of vertices adjacent to 
v along outgoing edges.
areAdjacent(v,w) whether vertices v and w are adjacent.
endVertices(e) the end vertices of e.
origin(e) the end vertex from which e leaves.
destination(e) the end vertex at which e arrives.
isDirected(e) true iff e is directed.
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Update Methods
makeUndirected(e) Set e to be an undirected edge.
reverseDirection(e) Switch the origin and destination 
vertices of e.
setDirectionFrom(e, v) Sets the direction of e away from 
v, one of its end vertices.
setDirectionTo(e, v) Sets the direction of e toward v, one 
of its end vertices.
insertEdge(v, w, o) Insert and return an undirected edge 
between v and w, storing o at this position.
insertDirectedEdge(v, w, o) Insert and return a directed 
edge between v and w, storing o at this position.
insertVertex(o) Insert and return a new (isolated) vertex 
storing o at this position.
removeEdge(e) Remove edge e.
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Data Structures for Graphs
Edge list
Adjacency lists
Adjacency matrix
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Data Structures for Graphs
A Graph! How can we represent it?
To start with, we store the vertices and the edges into two 
containers, and each edge object has references to the 
vertices it connects.

Additional structures can be used to perform efficiently the methods 
of the Graph ADT
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Edge List
The edge list structure simply stores the vertices and the 
edges into unsorted sequences.
Easy to implement.
Finding the edges incident on a given vertex is inefficient 
since it requires examining the entire edge sequence
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Performance of the Edge List Structure
Operation Time

size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)

vertices O(n)
edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)
endVertices, opposite, origin, destination, isDirected O(1)
incidentEdges, inIncidentEdges, outIncidentEdges, adjacent 
Vertices , inAdjacentVertices, outAdjacentVertices,areAdjacent, 
degree, inDegree, outDegree

O(m)

insertVertex, insertEdge, insertDirectedEdge,
removeEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

O(1)

removeVertex O(m)
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Adjacency List (traditional)
adjacency list of a vertex v:

sequence of vertices adjacent to v
represent the graph by the adjacency lists of all the vertices

Space =
Θ (N + Σ deg(v)) = Θ(N + M)
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Adjacency List (modern)
The adjacency list structure extends the edge list structure by 
adding incidence containers to each vertex.

The space requirement is O(n + m).
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Performance of the Adjacency List Structure
size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination, isDirected, degree, 
inDegree, outDegree

O(1)

incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v), 
adjacentVertices(v), inAdjacentVertices(v), 
outAdjacentVertices(v) 

O(deg(v))

areAdjacent(u, v) O(min(deg(
u),deg(v)))

insertVertex, insertEdge, insertDirectedEdge, removeEdge, 
makeUndirected, reverseDirection, insertVertex, insertEdge, 
insertDirectedEdge, removeEdge, makeUndirected, 
reverseDirection

O(1)
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Adjacency Matrix (traditional)

matrix M with entries for all pairs of vertices
M[i,j] = true means that there is an edge (i,j) in the graph.
M[i,j] = false means that there is no edge (i,j) in the graph.
There is an entry for every possible edge, therefore:

Space = Θ(N2)
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Adjacency Matrix (modern)
The adjacency matrix structures augments the edge list 
structure with a matrix where each row and column 
corresponds to a vertex.
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Performance of the Adjacency 
Matrix Structure
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