
1

Graphs
Definitions
Examples
The Graph ADT

2

What is a Graph?
A graph G = (V,E) is composed of:

V: set of vertices
E: set of edges connecting the vertices in V

An edge e = (u,v) is a pair of vertices
Example:

a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}

3

Applications

electronic circuits

find the path of least resistance to CS201
networks (roads, flights, communications)

CS201

start

4

more examples
scheduling (project planning)

wake up

eat

work

cs201 meditation

more cs201

play

sleep

dream of cs201

cs201 program

A typical student day

5

Graph Terminology
adjacent vertices: vertices connected by an edge
degree (of a vertex): # of adjacent vertices

What is the sum of the degrees of all vertices?
Twice the number of edges, since adjacent
vertices each count the adjoining edge, it will be
counted twice 3

3 3

3

2

6

Graph Terminology(2)
path: sequence of vertices v1,v2,. . .vk
such that consecutive vertices vi and vi+1
are adjacent.

a b

c

d e

a b

c

d e
a b e d c e b e d c

7

Graph Terminology (3)

simple path: no repeated
vertices

cycle: simple path, except
that the last vertex is the
same as the first vertex

a b

c

d e

b e c

8

More Terminology

connected not connected

connected graph: any two vertices are
connected by some path

9

More Terminology(2)
subgraph: subset of vertices and edges forming
a graph

G subgraph of G

10

More Terminology(3)

connected component: maximal connected
subgraph. E.g., the graph below has 3
connected components.

11

Yet Another Terminology Slide!
(free) tree -
connected graph
without cycles
forest - collection
of trees

12

Connectivity
Let n = #vertices, and m = #edges
Complete graph: one in which all pairs of
vertices are adjacent
How many edges does a complete graph have?

There are n(n-1)/2 pairs of vertices and so
m = n(n -1)/2.

Therefore, if a graph is not complete,
m < n(n -1)/2

13

More Connectivity

n = #vertices
m = #edges

For a tree m = n – 1
If m < n - 1, G is not
connected

14

Spanning Tree
A spanning tree of G is a subgraph which is a tree and
which contains all vertices of G

Failure on any edge disconnects system (least fault
tolerant)

15

The Bridges of Koenigsberg

Suppose you are a postman, and you didn’t want
to retrace your steps.
In 1736, Euler proved that this is not possible

16

Graph Model (with parallel edges)

Eulerian Tour: path
that traverses every
edge exactly once
and returns to the first
vertex
Euler’s Theorem: A
graph has a Eulerian
Tour if and only if all
vertices have even
degree

17

The Graph ADT
The Graph ADT is a positional container whose positions
are the vertices and the edges of the graph.

size() Return the number of vertices + number of edges of G.
isEmpty()
elements()
positions()
swap()
replaceElement()

Notation: Graph G; Vertices v, w; Edge e; Object o
numVertices() Return the number of vertices of G.
numEdges() Return the number of edges of G.
vertices() Return an enumeration of the vertices of G.
edges() Return an enumeration of the edges of G.

18

The Graph ADT (contd.)
directedEdges() enumeration of all directed edges in G.
undirectedEdges() enumeration of all undirected edges in G.
incidentEdges(v) enumeration of all edges incident on v.
inIncidentEdges(v) enumeration of all edges entering v.
outIncidentEdges(v) enumeration of all edges leaving v.
opposite(v, e) an endpoint of e distinct from v
degree(v) the degree of v.
inDegree(v) the in-degree of v.
outDegree(v) the out-degree of v.

19

More Methods ...
adjacentVertices(v) enumeration of vertices adjacent to v.
inAdjacentVertices(v) enumeration of vertices adjacent to v
along incoming edges.
outAdjacentVertices(v) enumeration of vertices adjacent to
v along outgoing edges.
areAdjacent(v,w) whether vertices v and w are adjacent.
endVertices(e) the end vertices of e.
origin(e) the end vertex from which e leaves.
destination(e) the end vertex at which e arrives.
isDirected(e) true iff e is directed.

20

Update Methods
makeUndirected(e) Set e to be an undirected edge.
reverseDirection(e) Switch the origin and destination
vertices of e.
setDirectionFrom(e, v) Sets the direction of e away from
v, one of its end vertices.
setDirectionTo(e, v) Sets the direction of e toward v, one
of its end vertices.
insertEdge(v, w, o) Insert and return an undirected edge
between v and w, storing o at this position.
insertDirectedEdge(v, w, o) Insert and return a directed
edge between v and w, storing o at this position.
insertVertex(o) Insert and return a new (isolated) vertex
storing o at this position.
removeEdge(e) Remove edge e.

21

Data Structures for Graphs
Edge list
Adjacency lists
Adjacency matrix

22

Data Structures for Graphs
A Graph! How can we represent it?
To start with, we store the vertices and the edges into two
containers, and each edge object has references to the
vertices it connects.

Additional structures can be used to perform efficiently the methods
of the Graph ADT

23

Edge List
The edge list structure simply stores the vertices and the
edges into unsorted sequences.
Easy to implement.
Finding the edges incident on a given vertex is inefficient
since it requires examining the entire edge sequence

24

Performance of the Edge List Structure
Operation Time

size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)

vertices O(n)
edges, directedEdges, undirectedEdges O(m)

elements, positions O(n+m)
endVertices, opposite, origin, destination, isDirected O(1)
incidentEdges, inIncidentEdges, outIncidentEdges, adjacent
Vertices , inAdjacentVertices, outAdjacentVertices,areAdjacent,
degree, inDegree, outDegree

O(m)

insertVertex, insertEdge, insertDirectedEdge,
removeEdge, makeUndirected, reverseDirection,
setDirectionFrom, setDirectionTo

O(1)

removeVertex O(m)

25

Adjacency List (traditional)
adjacency list of a vertex v:

sequence of vertices adjacent to v
represent the graph by the adjacency lists of all the vertices

Space =
Θ (N + Σ deg(v)) = Θ(N + M)

26

Adjacency List (modern)
The adjacency list structure extends the edge list structure by
adding incidence containers to each vertex.

The space requirement is O(n + m).

27

Performance of the Adjacency List Structure
size, isEmpty, replaceElement, swap O(1)
numVertices, numEdges O(1)
vertices O(n)
edges, directedEdges, undirectedEdges O(m)
elements, positions O(n+m)
endVertices, opposite, origin, destination, isDirected, degree,
inDegree, outDegree

O(1)

incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v),
adjacentVertices(v), inAdjacentVertices(v),
outAdjacentVertices(v)

O(deg(v))

areAdjacent(u, v) O(min(deg(
u),deg(v)))

insertVertex, insertEdge, insertDirectedEdge, removeEdge,
makeUndirected, reverseDirection, insertVertex, insertEdge,
insertDirectedEdge, removeEdge, makeUndirected,
reverseDirection

O(1)

28

Adjacency Matrix (traditional)

matrix M with entries for all pairs of vertices
M[i,j] = true means that there is an edge (i,j) in the graph.
M[i,j] = false means that there is no edge (i,j) in the graph.
There is an entry for every possible edge, therefore:

Space = Θ(N2)

29

Adjacency Matrix (modern)
The adjacency matrix structures augments the edge list
structure with a matrix where each row and column
corresponds to a vertex.

30

Performance of the Adjacency
Matrix Structure

	Graphs
	What is a Graph?
	Applications
	more examples
	Graph Terminology
	Graph Terminology(2)
	Graph Terminology (3)
	More Terminology
	More Terminology(2)
	More Terminology(3)
	Yet Another Terminology Slide!
	Connectivity
	More Connectivity
	Spanning Tree
	The Bridges of Koenigsberg
	Graph Model (with parallel edges)
	The Graph ADT
	The Graph ADT (contd.)
	More Methods ...
	Update Methods
	Data Structures for Graphs
	Data Structures for Graphs
	Edge List
	Performance of the Edge List Structure
	Adjacency List (traditional)
	Adjacency List (modern)
	Performance of the Adjacency List Structure
	Adjacency Matrix (traditional)
	Adjacency Matrix (modern)
	Performance of the Adjacency Matrix Structure

