
1

More Sorting

radix sort
bucket sort
in-place sorting
how fast can we sort?



2

Radix Sort
Unlike other sorting methods, radix sort considers the 
structure of the keys
Assume keys are represented in a base M number 
system (M = radix), i.e., if M = 2, the keys are 
represented in binary

Sorting is done by comparing bits in the same position

Extension to keys that are alphanumeric strings



3

Radix Exchange Sort
Examine bits from left to right:
1.  Sort array with respect to leftmost bit

2.  Partition array

3.Recursion
recursively sort top subarray, ignoring leftmost bit
recursively sort bottom subarray, ignoring leftmost bit
Time to sort n b-bit numbers:  O(b n)



4

Radix Exchange Sort
How do we do the sort from the previous page?  Same idea as 
partition in Quicksort.

repeat
scan top-down to find key starting with 1;
scan bottom-up to find key starting with 0;
exchange keys;

until  scan indices cross;



5

Radix Exchange Sort



6

Radix Exchange Sort vs. Quicksort
Similarities

both partition array
both recursively sort sub-arrays

Differences
Method of partitioning

radix exchange divides array based on greater than or 
less than 2b-1

quicksort partitions based on greater than or less than 
some element of the array

Time complexity
Radix exchange              O (bn)
Quicksort average case   O (n log n)



7

Straight Radix Sort

Examines bits from right to left

for  k := 0  to  b-1 
sort the array in a stable way,
looking only at bit k

Note order of these bits after sort.



8

What is “sort in a stable way”!!!
In a stable sort, the initial relative order of  equal keys is 
unchanged. For example, observe the first step of the sort from 
the previous page:

Note that the relative order of those keys ending with 0 is 
unchanged, and the same is true for elements ending in 1



9

The Algorithm is Correct (right?)
We show that any two keys are in the correct relative order at the 
end of the algorithm

Given two keys, let  k be the leftmost bit-position where they 
differ

At step k the two keys are put in the correct relative order
Because of stability, the successive steps do not change the 
relative order of the two keys



10

For Instance,
Consider a sort on an array with these two keys:



11

Radix sorting applied to decimal numbers



12

Straight Radix Sort Time Complexity

for  k = 0  to b - 1  
sort the array in a stable way, looking only at bit k

Suppose we can perform the stable sort above in O(n) time.  
The total time complexity would be 

O(bn)
As you might have guessed, we can perform a stable sort based 
on the keys’ kth digit in O(n) time.

The method, you ask?  Why it’s Bucket Sort, of course.



13

Bucket Sort

BASICS:
n numbers
Each number ∈ {1, 2, 3, ... m}
Stable
Time:  O (n + m)

For example, m = 3 and our array is:

(note that there are two “2”s and two “1”s)

First, we create M “buckets”



14

Bucket Sort
Each element of the array is put in one of the m “buckets”



15

Bucket Sort

Now, pull the elements from 
the buckets into the array

At last, the sorted array (sorted 
in a stable way):



16

In-Place Sorting
A sorting algorithm is said to be in-place if

it uses no auxiliary data structures (however, O(1) 
auxiliary variables are allowed)
it updates the input sequence only by means of 
operations replaceElement and swapElements

Which sorting algorithms seen can be made to 
work in place?



17

Lower Bd. for Comparison Based Sorting
internal node: comparison
external node: permutation
algorithm execution: root-to-leaf path



18

How Fast Can We Sort?

How Fast Can We Sort?
Proposition: The running time of any 
comparison-based algorithm for sorting an n-
element sequence S is Ω(n log n).
Justification: The running time of a 
comparison-based sorting algorithm must be 
equal to or greater than the depth of the 
decision tree T associated with this algorithm.



19

How Fast Can We Sort? (2)

Each internal node of T is associated with a 
comparison that establishes the ordering of two 
elements of S.
Each external node of T represents a distinct 
permutation of the elements of S.
Hence T must have at least n! external nodes which 
again implies T has a height of at least log(n!)
Since n! has at least n/2 terms that are greater than 
or equal to n/2, we have: log(n!) ≥ (n/2) log(n/2)
Total Time Complexity: Ω(n log n).


	More Sorting
	Radix Sort
	Radix Exchange Sort
	Radix Exchange Sort
	Radix Exchange Sort
	Radix Exchange Sort vs. Quicksort
	Straight Radix Sort
	What is “sort in a stable way”!!!
	The Algorithm is Correct (right?)
	For Instance,
	Radix sorting applied to decimal numbers
	Straight Radix Sort Time Complexity
	Bucket Sort
	Bucket Sort
	Bucket Sort
	In-Place Sorting	
	Lower Bd. for Comparison Based Sorting
	How Fast Can We Sort?
	How Fast Can We Sort? (2)

