" S
Binary Heaps
Delete-min

Building a heap in O(n) time
Heap Sort

" I
Delete-min

The minimum element is the one at the top
of the heap.

We can delete this and move one of Its
children up to fill the space.

Empty location moves down the tree.
Might end up at any position on last level.
Resulting tree would not be left filled.

" S
Delete-min in a Heap

©
10 1,

19 @) @) 12
43) @3 (o) 9 Gy (9 (7

This is not a heap

"
Delete-min in a Heap (2)

Replace top element with last element
of heap.

Heapify(1) (8)

10 1,

lo @) (3 (2
43) (3 Qo 9 Gy (9 (7

" S
Building a heap

We start from the bottom and move up
All leaves are heaps to begin with

BuiLD-HEAP(A) @
1for i <— |n/2]| downto 1

2 do HEAPIFY(A,)
19 Q) (3 31
1) (12 (8) 29 (W) (9 (7

" S
Building a Heap: Analysis

Correctness: induction on i, all trees
rooted at m > i are heaps

Running time: n calls to Heapify = n O(lg
n) = O(nlg n)

We can provide a better O(n) bound.

Intuition: for most of the time Heapify works
on smaller than n element heaps

* S
Building a Heap: Analysis (2)

height of node: length of longest path from
node to leaf

height of tree: height of root

time for Heapify(i) = O(height of subtree
rooted at 1)

assume n = 2k —1 (a complete binary
tree)

* S
Building a heap: Analysis (3)

For the n/2 nodes of height 1, heapify() requires
at most 1 swap each.

For the n/4 nodes of height 2, heapify() requires
at most 2 swaps each.

For the n/2' nodes of height i, heapify() requires
at most | swaps each.
So total number of swaps required Is

T(n) = O n+1+nzl-2+nT+l-3+...+1-kj

2
[lon] ij L 1/2

= 0 (n+1)-2§

i=1

= 0O(n)

"
Building a Heap: Analysis (4)

How? By using the following "trick"

Z :—X if |x| <1 //differentiate

i=0 -

N /Imultiply by X

z_lj (l—x) ply by

i . 1
i-x' [lplug In X ==

; (1 x) PHED 2

-1 1/2

ol 114

Therefore Build-Heap time is O(n)

" I
Heap Sort

Create a heap.

Do delete-min

repeatedly till (8)

heap becomes

empty. 10, 1)
To do an in place

sort, we move @ @ @

deleted elemen

toendofheap. 23) @3) 29) (19) BV

10

" S
Running times of heap operations

Insert: O(log n)
Heapify: O(log n)
Find minimum: O(1)
Delete-min: O(log n)
Building a heap: O(n)
Heap Sort: O(nlog n)

11

