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Binary Heaps

Delete-min

Building a heap in O(n) time

Heap Sort
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Delete-min

The minimum element is the one at the top 

of the heap.

We can delete this and move one of its 

children up to fill the space. 

Empty location moves down the tree.

Might end up at any position on last level. 

Resulting tree would not be left filled.



3

Delete-min in a Heap

This is not a heap
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Delete-min in a Heap (2)

Replace top element with last element 
of heap.

Heapify(1)
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Building a heap

 We start from the bottom and move up

 All leaves are heaps to begin with
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Building a Heap: Analysis

Correctness: induction on i, all trees 

rooted at m > i are heaps

Running time: n calls to Heapify = n O(lg 

n) = O(n lg n)

We can provide a better O(n) bound.

 Intuition: for most of the time Heapify works 

on smaller than n element heaps 
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Building a Heap: Analysis (2)

 height of node: length of longest path from 
node to leaf

 height of tree: height of root

 time for Heapify(i) = O(height of subtree 
rooted at i)

 assume n = 2k – 1 (a complete binary 
tree)
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Building a heap: Analysis (3)

 For the n/2 nodes of height 1, heapify() requires 
at most 1 swap each.

 For the n/4 nodes of height 2, heapify() requires 
at most 2 swaps each. 

 For the n/2i nodes of height i, heapify() requires 
at most i swaps each.

 So total number of swaps required is
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Building a Heap: Analysis (4)

 How? By using the following "trick"

 Therefore Build-Heap time is O(n)
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Heap Sort

Create a heap.

Do delete-min 

repeatedly till 

heap becomes 

empty.

To do an in place 

sort, we move 

deleted element 

to end of heap.
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Running times of heap operations

 Insert: O(log n)

Heapify: O(log n)

Find minimum: O(1)

Delete-min: O(log n)

Building a heap: O(n)

Heap Sort: O(nlog n)


