
1

Binary Heaps

Delete-min

Building a heap in O(n) time

Heap Sort

2

Delete-min

The minimum element is the one at the top

of the heap.

We can delete this and move one of its

children up to fill the space.

Empty location moves down the tree.

Might end up at any position on last level.

Resulting tree would not be left filled.

3

Delete-min in a Heap

This is not a heap

11

18

19

21

10

13

23 26 29 3143

12

17

8

4

Delete-min in a Heap (2)

Replace top element with last element
of heap.

Heapify(1)

11

16

19

21

10

13

23 26 29 3143

12

17

8

5

Building a heap

 We start from the bottom and move up

 All leaves are heaps to begin with

1116 19

2110 13

23

26

29

43

31

12 8 17

6

Building a Heap: Analysis

Correctness: induction on i, all trees

rooted at m > i are heaps

Running time: n calls to Heapify = n O(lg

n) = O(n lg n)

We can provide a better O(n) bound.

 Intuition: for most of the time Heapify works

on smaller than n element heaps

7

Building a Heap: Analysis (2)

 height of node: length of longest path from
node to leaf

 height of tree: height of root

 time for Heapify(i) = O(height of subtree
rooted at i)

 assume n = 2k – 1 (a complete binary
tree)

8

Building a heap: Analysis (3)

 For the n/2 nodes of height 1, heapify() requires
at most 1 swap each.

 For the n/4 nodes of height 2, heapify() requires
at most 2 swaps each.

 For the n/2i nodes of height i, heapify() requires
at most i swaps each.

 So total number of swaps required is

()
()

lg lg

2
1 1

1 1 1
() 2 3 ... 1

2 4 8

1/ 2
1 since 2

2 2 1 1/ 2

()

n n

i i
i i

n n n
T n O k

i i
O n

O n

= =

+ + +
= + + + +

= + = = −

=

9

Building a Heap: Analysis (4)

 How? By using the following "trick"

 Therefore Build-Heap time is O(n)

()

()

0

1

2
1

2
1

1

1
 if 1 //differentiate

1

1
 //multiply by

1

1
 //plug in

21

1/ 2
2

2 1/ 4

i

i

i

i

i

i

i
i

x x
x

i x x
x

x
i x x

x

i

=

−

=

=

=

=
−

 =
−

 = =
−

= =

10

Heap Sort

Create a heap.

Do delete-min

repeatedly till

heap becomes

empty.

To do an in place

sort, we move

deleted element

to end of heap.

11

16 19

21

10

13

23 262943 31

12

8

17

11

Running times of heap operations

 Insert: O(log n)

Heapify: O(log n)

Find minimum: O(1)

Delete-min: O(log n)

Building a heap: O(n)

Heap Sort: O(nlog n)

