
1

Binary Heaps

Delete-min

Building a heap in O(n) time

Heap Sort

2

Delete-min

The minimum element is the one at the top

of the heap.

We can delete this and move one of its

children up to fill the space.

Empty location moves down the tree.

Might end up at any position on last level.

Resulting tree would not be left filled.

3

Delete-min in a Heap

This is not a heap

11

18

19

21

10

13

23 26 29 3143

12

17

8

4

Delete-min in a Heap (2)

Replace top element with last element
of heap.

Heapify(1)

11

16

19

21

10

13

23 26 29 3143

12

17

8

5

Building a heap

 We start from the bottom and move up

 All leaves are heaps to begin with

1116 19

2110 13

23

26

29

43

31

12 8 17

6

Building a Heap: Analysis

Correctness: induction on i, all trees

rooted at m > i are heaps

Running time: n calls to Heapify = n O(lg

n) = O(n lg n)

We can provide a better O(n) bound.

 Intuition: for most of the time Heapify works

on smaller than n element heaps

7

Building a Heap: Analysis (2)

 height of node: length of longest path from
node to leaf

 height of tree: height of root

 time for Heapify(i) = O(height of subtree
rooted at i)

 assume n = 2k – 1 (a complete binary
tree)

8

Building a heap: Analysis (3)

 For the n/2 nodes of height 1, heapify() requires
at most 1 swap each.

 For the n/4 nodes of height 2, heapify() requires
at most 2 swaps each.

 For the n/2i nodes of height i, heapify() requires
at most i swaps each.

 So total number of swaps required is

()
()

lg lg

2
1 1

1 1 1
() 2 3 ... 1

2 4 8

1/ 2
1 since 2

2 2 1 1/ 2

()

n n

i i
i i

n n n
T n O k

i i
O n

O n

      

= =

+ + + 
= +  +  + +  

 

 
= +  = =   − 

=

 

9

Building a Heap: Analysis (4)

 How? By using the following "trick"

 Therefore Build-Heap time is O(n)

()

()

0

1

2
1

2
1

1

1
 if 1 //differentiate

1

1
 //multiply by

1

1
 //plug in

21

1/ 2
2

2 1/ 4

i

i

i

i

i

i

i
i

x x
x

i x x
x

x
i x x

x

i



=


−

=



=



=

= 
−

 =
−

 = =
−

= =









10

Heap Sort

Create a heap.

Do delete-min

repeatedly till

heap becomes

empty.

To do an in place

sort, we move

deleted element

to end of heap.

11

16 19

21

10

13

23 262943 31

12

8

17

11

Running times of heap operations

 Insert: O(log n)

Heapify: O(log n)

Find minimum: O(1)

Delete-min: O(log n)

Building a heap: O(n)

Heap Sort: O(nlog n)

