
1

Priority Queues

 Scheduling example

 The priority queue ADT

 Implementing a priority queue with a sequence

 Binary Heaps

 Insertion in a Heaps and Heapify

2

Scheduling

 In a multi-user computer system, multiple users
submit jobs to run on a single processor.

 We assume that the time required by each job is
known in advance. Further, jobs can be
preempted (stopped and resumed later)

 One policy which minimizes the average waiting
time is SRPT (shortest remaining processing
time).

 The processor schedules the job with the
smallest remaining processing time.

 If while a job is running a new job arrives with
processing time less than the remaining time of
current job, the current job is preempted.

3

Data Structure for SRPT

We need to maintain the remaining
processing time of the unfinished jobs at
any point in time.

We need to find the job with the shortest
remaining processing time.

When a job finishes we should remove it
from our collection.

When a new job arrives we need to add it
to the collection.

4

Priority Queues

 A priority queue is an ADT(abstract data type)

for maintaining a set S of elements, each with an

associated value called priority

 A PQ supports the following operations

 Insert(x) insert element x in set S (SS{x})

 Minimum() returns the element of S with smallest

priority.

 Delete-min() returns and removes the element of S

with smallest priority.

5

Priorities and Total Order Relations

 A Priority Queue ranks its elements by priority.

 Every element has a priority. Priorities are not

necessarily unique and are totally ordered.

 Total Order Relation, denoted by

Reflexive: k k

Antisymetric: if k1 k2 and k2 k1, then k1 k2

Transitive: if k1 k2 and k2 k3, then k1 k3

6

Comparators

 The most general and reusable form of a priority
queue makes use of comparator objects.

 Comparator objects are external to the keys that
are to be compared and compare two objects.

 When the priority queue needs to compare two
keys, it uses the comparator it was given to do the
comparison.

 Thus a priority queue can be general enough to
store any object.

 The comparator ADT includes:
isLessThan(a, b), isLessThanOrEqualTo(a,b),

isEqualTo(a, b), isGreaterThan(a,b),

isGreaterThanOrEqualTo(a,b), isComparable(a)

7

Implem. with Unsorted Sequence

 The items are pairs (priority, element)

 We can implement insert() by using insertLast() on

the sequence. This takes O(1) time.

 However, because we always insert at the end,

irrespective of the key value, our sequence is not

ordered.

8

Unsorted Sequence (contd.)

 Thus, for methods such as minimum(),delete-min()

we need to look at all the elements of S. The worst

case time complexity for these methods is O(n).

9

Implem. with Sorted Sequence

 Another implementation uses a sequence S,
sorted by increasing priorities.

 minimum() and delete-min() take O(1) time.

 However, to implement insert(), we must now
scan through the entire sequence in the worst
case. Thus insert() runs in O(n) time.

10

Priority Queues

Applications:

 job scheduling shared computing resources

(Unix)

Event simulation

As a building block for other algorithms

A Heap can be used to implement a PQ

11

(Binary) Heaps

A binary tree that stores priorities (or priority-

element) pairs at nodes

11

18 1921

17 13

23 26 29 3143

17

Structural property:

All levels except last

are full. Last level is

left-filled.

Heap property:

Priority of node is at

least as large as that

of its parent.

12

Examples of non-Heaps

Heap property violated

11

18 1921

19 13

23 26 29 3143

17

13

Example of non-heap

 Last level not left-filled

11

18 1921

17 13

26 29 3143

17

14

Finding the minimum element

The element with smallest priority always

sits at the root of the heap.

This is because if it was elsewhere, it

would have a parent with larger priority

and this would violate the heap property.

Hence minimum() can be done in O(1)

time.

15

Height of a heap

Suppose a heap of n nodes has height h.

Recall: complete binary tree of height h

has 2h+1-1 nodes.

Hence 2h-1 < n <= 2h+1-1.

 n = log2 h

16

Implementing Heaps

1 2 3 4 5 6 7 8 9 10

11 17 13 18 21 19 17 43 23 26

Parent (i)
return i/2

Left (i)
return 2i

Right (i)
return 2i+1

Heap property: A[Parent(i)] <= A[i]

Level: 0 1 2 3

11

18 1921

17 13

2643

17

23

A

17

Implementing Heaps (2)

Notice the implicit tree links; children of

node i are 2i and 2i+1

Why is this useful?

 In a binary representation, a

multiplication/division by two is left/right shift

Adding 1 can be done by adding the lowest bit

18

Insertion in a Heap

 Insert 12

 Insert 8
11

18 1921

17 13

23 26 29 3143 12

17

8

19

Another View of Insertion
 Enlarge heap

 Consider path from root to inserted node

 Find topmost element on this path with higher priority that
that of inserted element.

 Insert new element at this location by shifting down the
other elements on the path 11

18 1921

17 13

23 26 29 3143

12

17

20

Correctness of Insertion
 The only nodes whose contents change are the

ones on the path.

 Heap property may be violated only for children
of these nodes.

 But new contents of these nodes only have
lower priority.

 So heap property not violated.
11

18 1921

17 13

23 26 29 3143

12

17

21

Heapify

 i is index into the array A

Binary trees rooted at Left(i) and Right(i)

are heaps

But, A[i] might be smaller than its children,

thus violating the heap property

The method Heapify makes binary tree

rooted at i a heap by moving A[i] down the

heap.

22

Heapify

 Heap property violated at node with index 1 but
subtrees rooted at 2, 3 are heaps.

 heapify(1)

11

16

19

21

10

13

23 26 29 3143

12

17

23

Another View of Heapify
 Heapify(i) traces a path down the tree.

 Last node on path (say j) has both A[left(j)], A[right(j)] are
larger than A[i]

 All elements on path have lower priority than their siblings.

 All elements on this path are moved up.

 A[i] goes to location j.

 This establishes correctness
11

16

19

21

10

13

23 26 29 3143

12

17

24

Running time Analysis

A heap of n nodes has height O(log n).

While inserting we might have to move the

element all the way to the top.

Hence at most O(log n) steps required.

 In Heapify, the element might be moved all

the way to the last level.

Hence Heapify also requires O(log n) time.

