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Scheduling

 In a multi-user computer system, multiple users 
submit jobs to run on a single processor.

 We assume that the time required by each job is 
known in advance. Further, jobs can be 
preempted (stopped and resumed later)

 One policy which minimizes the average waiting 
time is SRPT (shortest remaining processing 
time).

 The processor schedules the job with the 
smallest remaining processing time.

 If while a job is running a new job arrives with 
processing time less than the remaining time of 
current job, the current job is preempted.
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Data Structure for SRPT

We need to maintain the remaining 
processing time of the unfinished jobs at 
any point in time.

We need to find the job with the shortest 
remaining processing time.

When a job finishes we should remove it 
from our collection.

When a new job arrives we need to add it 
to the collection. 
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Priority Queues

 A priority queue is an ADT(abstract data type)

for maintaining a set S of elements, each with an 

associated value called priority

 A PQ supports the following operations

 Insert(x) insert element x in set S (SS{x})

 Minimum() returns the element of S with smallest 

priority.

 Delete-min() returns and removes the element of S 

with smallest priority.
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Priorities and Total Order Relations

 A Priority Queue ranks its elements by priority.

 Every element has a priority. Priorities are not 

necessarily unique and are totally ordered.

 Total Order Relation, denoted by 

Reflexive: k  k

Antisymetric: if k1  k2 and k2  k1, then k1  k2

Transitive: if k1  k2 and k2  k3, then k1  k3
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Comparators

 The most general and reusable form of a priority 
queue makes use of comparator objects.

 Comparator objects are external to the keys that 
are to be compared and compare two objects.

 When the priority queue needs to compare two 
keys, it uses the comparator it was given to do the 
comparison.

 Thus a priority queue can be general enough to 
store any object.

 The comparator ADT includes:
isLessThan(a, b), isLessThanOrEqualTo(a,b), 

isEqualTo(a, b), isGreaterThan(a,b), 

isGreaterThanOrEqualTo(a,b), isComparable(a)
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Implem. with Unsorted Sequence

 The items are pairs (priority, element)

 We can implement insert() by using insertLast() on 

the sequence. This takes O(1) time.

 However, because we always insert at the end, 

irrespective of the key value, our sequence is not 

ordered.
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Unsorted Sequence (contd.)

 Thus, for methods such as minimum(),delete-min() 

we need to look at all the elements of S. The worst 

case time complexity for these methods is O(n).
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Implem. with Sorted Sequence

 Another implementation uses a sequence S, 
sorted by increasing priorities.

 minimum() and delete-min() take O(1) time.

 However, to implement insert(), we must now 
scan through the entire sequence in the worst 
case. Thus insert() runs in O(n) time.
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Priority Queues

Applications: 

 job scheduling shared computing resources 

(Unix)

Event simulation

As a building block for other algorithms

A Heap can be used to implement a PQ
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(Binary) Heaps

A binary tree that stores priorities (or priority-

element) pairs at nodes
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Structural property:

All levels except last 

are full. Last level is 

left-filled. 

Heap property:

Priority of node is at 

least as large as that 

of its parent.
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Examples of non-Heaps

Heap property violated
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Example of non-heap

 Last level not left-filled
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Finding the minimum element

The element with smallest priority always 

sits at the root of the heap.

This is because if it was elsewhere, it 

would have a parent with larger priority 

and this would violate the heap property. 

Hence minimum() can be done in O(1) 

time.
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Height of a heap

Suppose a heap of n nodes has height h.

Recall: complete binary tree of height h 

has 2h+1-1 nodes.

Hence 2h-1 < n <= 2h+1-1.

 n = log2 h
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Implementing Heaps

1 2 3 4 5 6 7 8 9 10

11 17 13 18 21 19 17 43 23 26

Parent (i)
return i/2

Left (i)
return 2i

Right (i)
return 2i+1

Heap property: A[Parent(i)] <= A[i]

Level:  0     1 2 3
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Implementing Heaps (2)

Notice the implicit tree links; children of 

node i are 2i and 2i+1

Why is this useful?

 In a binary representation, a 

multiplication/division by two is left/right shift

Adding 1 can be done by adding the lowest bit
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Insertion in a Heap

 Insert 12

 Insert 8
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Another View of Insertion
 Enlarge heap

 Consider path from root to inserted node

 Find topmost element on this path with higher priority that 
that of inserted element.

 Insert new element at this location by shifting down the 
other elements on the path 11
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Correctness of Insertion
 The only nodes whose contents change are the 

ones on the path.

 Heap property may be violated only for children 
of these nodes.

 But new contents of these nodes only have 
lower priority.

 So heap property not violated.
11

18 1921

17 13

23 26 29 3143

12

17



21

Heapify

 i is index into the array A

Binary trees rooted at Left(i) and Right(i) 

are heaps

But, A[i] might be smaller than its children, 

thus violating the heap property

The method Heapify makes binary tree 

rooted at i a heap by moving A[i] down the 

heap.



22

Heapify

 Heap property violated at node with index 1 but 
subtrees rooted at 2, 3 are heaps.

 heapify(1) 
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Another View of Heapify
 Heapify(i) traces a path down the tree.

 Last node on path (say j) has both A[left(j)], A[right(j)] are 
larger than A[i]

 All elements on path have lower priority than their siblings.

 All elements on this path are moved up.

 A[i] goes to location j.

 This establishes correctness
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Running time Analysis

A heap of n nodes has height O(log n).

While inserting we might have to move the 

element all the way to the top.

Hence at most O(log n) steps required.

 In Heapify, the element might be moved all 

the way to the last level.

Hence Heapify also requires O(log n) time. 


