" S
Priority Queues

Scheduling example

The priority queue ADT

Implementing a priority queue with a sequence
Binary Heaps

Insertion in a Heaps and Heapify




" S
Scheduling

In a multi-user computer system, multiple users
submit jobs to run on a single processor.

We assume that the time required by each job Is
known In advance. Further, jobs can be
preempted (stopped and resumed later)

One policy which minimizes the average waiting
time Is SRPT (shortest remaining processing
time).

The processor schedules the job with the
smallest remaining processing time.

If while a job Is running a new job arrives with
processing time less than the remaining time of
current job, the current job Is preempted.




" I
Data Structure for SRPT

We need to maintain the remaining
processing time of the unfinished jobs at
any point in time.

We need to find the job with the shortest
remaining processing time.

When a job finishes we should remove it
from our collection.

When a new job arrives we need to add it
to the collection.



* S
Priority Queues

A priority queue Is an ADT(abstract data type)
for maintaining a set S of elements, each with an
associated value called priority

A PQ supports the following operations
Insert(x) insert element x in set S (S<Su{x})
Minimum() returns the element of S with smallest
priority.

Delete-min() returns and removes the element of S
with smallest priority.



=
Priorities and Total Order Relations

A ranks its elements by priority.

Every element has a priority. Priorities are not
necessarily unique and are totally ordered.

Total Order Relation, denoted by <
Reflexive: k <k

Antisymetric: If k1 < k2 and k2 < k1, then k1 < k2
Transitive: If k1l < k2 and k2 < k3, then k1 < k3



" S
Comparators

The most general and reusable form of a priority
gueue makes use of comparator objects.

Comparator objects are external to the keys that
are to be compared and compare two objects.

When the priority queue needs to compare two
keys, It uses the comparator it was given to do the
comparison.

Thus a priority qgueue can be general enough to
store any object.

The comparator ADT includes:



" S
Implem. with Unsorted Sequence

The items are pairs (priority, element)

We can implement insert() by using insertLast() on
the sequence. This takes O(1) time.

However, because we always insert at the end,

Irrespective of the key value, our sequence is not
ordered.



" A
Unsorted Sequence (contd.)
Thus, for methods such as minimum(),delete-min()

we need to look at all the elements of S. The worst
case time complexity for these methods is O(n).




" S
Implem. with Sorted Sequence

Another implementation uses a sequence S,
sorted by increasing priorities.

minimum() and delete-min() take O(1) time.

However, to implement iInsert(), we must Now
scan through the entire sequence in the worst
case. Thus insert() runs in O(n) time.




" S
Priority Queues

Applications:

job scheduling shared computing resources
(Unix)

Event simulation

As a building block for other algorithms

A Heap can be used to implement a PQ

10



" S
(Binary) Heaps

A binary tree that stores priorities (or priority-
element) pairs at nodes

Structural property:
All levels except last
are full. Last level is
left-filled.

Heap property:
Priority of node Is at
least as large as that
of its parent.

11



" S
Examples of non-Heaps

Heap property violated

12



" S
Example of non-heap

L ast level not left-filled

13



" B
Finding the minimum element

The element with smallest priority always
sits at the root of the heap.

This Is because If it was elsewhere, it
would have a parent with larger priority
and this would violate the heap property.

Hence minimum() can be done in O(1)
time.

14



" S
Height of a heap

Suppose a heap of n nodes has height h.

Recall: complete binary tree of height h
has 2h*1-1 nodes.

Hence 2h-1 < n <= 2h+1-1,
n =[log, h.

15



" S
Implementing Heaps

Parent (i)
return Li/2]

Left (i)
return 2i

Right (i)
return 2i+1

A
Level: 0

Heap property: A[Parent(i)] <= AJi]

16



* S
Implementing Heaps (2)

Notice the implicit tree links; children of
node | are 2i and 2i+1
Why is this useful?

In a binary representation, a
multiplication/division by two is left/right shift

Adding 1 can be done by adding the lowest bit

17



"
Insertion In a Heap

Insert 12 @
Insert 8

g Q) (9
43) (3 Qo (9 G (12) (8

18



" I
Another View of Insertion

Enlarge heap
Consider path from root to inserted node

Find topmost element on this path with higher priority that
that of inserted element.

Insert new element at this location by shifting down the

other elements on the path 12

19



= I
Correctness of Insertion

The only nodes whose contents change are the
ones on the path.

Heap property may be violated only for children
of these nodes.

But new contents of these nodes only have
lower priority.

So heap property not violated.

12



" S
Heapify

| IS Index Into the array A

Binary trees rooted at Left(i) and Right(i)
are heaps

But, A[i] might be smaller than its children,
thus violating the heap property

The method Heapify makes binary tree
rooted at | a heap by moving A[i] down the
heap.

21



" S
Heapify

Heap property violated at node with index 1 but
subtrees rooted at 2, 3 are heaps.

heapify(1)

22



" S
Another View of Heapify

Heapify(i) traces a path down the tree.

Last node on path (say ]) has both Afleft(j)], A[right(j)] are
larger than AJi]

All elements on path have lower priority than their siblings.
All elements on this path are moved up.
A[l] goes to location |.

This establishes correctness

23



" B
Running time Analysis

A heap of n nodes has height O(log n).

While inserting we might have to move the
element all the way to the top.

Hence at most O(log n) steps required.

In Heapify, the element might be moved all
the way to the last level.

Hence Heapify also requires O(log n) time.

24



