
1

Priority Queues

 Scheduling example

 The priority queue ADT

 Implementing a priority queue with a sequence

 Binary Heaps

 Insertion in a Heaps and Heapify



2

Scheduling

 In a multi-user computer system, multiple users 
submit jobs to run on a single processor.

 We assume that the time required by each job is 
known in advance. Further, jobs can be 
preempted (stopped and resumed later)

 One policy which minimizes the average waiting 
time is SRPT (shortest remaining processing 
time).

 The processor schedules the job with the 
smallest remaining processing time.

 If while a job is running a new job arrives with 
processing time less than the remaining time of 
current job, the current job is preempted.



3

Data Structure for SRPT

We need to maintain the remaining 
processing time of the unfinished jobs at 
any point in time.

We need to find the job with the shortest 
remaining processing time.

When a job finishes we should remove it 
from our collection.

When a new job arrives we need to add it 
to the collection. 



4

Priority Queues

 A priority queue is an ADT(abstract data type)

for maintaining a set S of elements, each with an 

associated value called priority

 A PQ supports the following operations

 Insert(x) insert element x in set S (SS{x})

 Minimum() returns the element of S with smallest 

priority.

 Delete-min() returns and removes the element of S 

with smallest priority.



5

Priorities and Total Order Relations

 A Priority Queue ranks its elements by priority.

 Every element has a priority. Priorities are not 

necessarily unique and are totally ordered.

 Total Order Relation, denoted by 

Reflexive: k  k

Antisymetric: if k1  k2 and k2  k1, then k1  k2

Transitive: if k1  k2 and k2  k3, then k1  k3



6

Comparators

 The most general and reusable form of a priority 
queue makes use of comparator objects.

 Comparator objects are external to the keys that 
are to be compared and compare two objects.

 When the priority queue needs to compare two 
keys, it uses the comparator it was given to do the 
comparison.

 Thus a priority queue can be general enough to 
store any object.

 The comparator ADT includes:
isLessThan(a, b), isLessThanOrEqualTo(a,b), 

isEqualTo(a, b), isGreaterThan(a,b), 

isGreaterThanOrEqualTo(a,b), isComparable(a)



7

Implem. with Unsorted Sequence

 The items are pairs (priority, element)

 We can implement insert() by using insertLast() on 

the sequence. This takes O(1) time.

 However, because we always insert at the end, 

irrespective of the key value, our sequence is not 

ordered.



8

Unsorted Sequence (contd.)

 Thus, for methods such as minimum(),delete-min() 

we need to look at all the elements of S. The worst 

case time complexity for these methods is O(n).



9

Implem. with Sorted Sequence

 Another implementation uses a sequence S, 
sorted by increasing priorities.

 minimum() and delete-min() take O(1) time.

 However, to implement insert(), we must now 
scan through the entire sequence in the worst 
case. Thus insert() runs in O(n) time.



10

Priority Queues

Applications: 

 job scheduling shared computing resources 

(Unix)

Event simulation

As a building block for other algorithms

A Heap can be used to implement a PQ



11

(Binary) Heaps

A binary tree that stores priorities (or priority-

element) pairs at nodes

11

18 1921

17 13

23 26 29 3143

17

Structural property:

All levels except last 

are full. Last level is 

left-filled. 

Heap property:

Priority of node is at 

least as large as that 

of its parent.



12

Examples of non-Heaps

Heap property violated

11

18 1921

19 13

23 26 29 3143

17



13

Example of non-heap

 Last level not left-filled

11

18 1921

17 13

26 29 3143

17



14

Finding the minimum element

The element with smallest priority always 

sits at the root of the heap.

This is because if it was elsewhere, it 

would have a parent with larger priority 

and this would violate the heap property. 

Hence minimum() can be done in O(1) 

time.



15

Height of a heap

Suppose a heap of n nodes has height h.

Recall: complete binary tree of height h 

has 2h+1-1 nodes.

Hence 2h-1 < n <= 2h+1-1.

 n = log2 h



16

Implementing Heaps

1 2 3 4 5 6 7 8 9 10

11 17 13 18 21 19 17 43 23 26

Parent (i)
return i/2

Left (i)
return 2i

Right (i)
return 2i+1

Heap property: A[Parent(i)] <= A[i]

Level:  0     1 2 3

11

18 1921

17 13

2643

17

23

A



17

Implementing Heaps (2)

Notice the implicit tree links; children of 

node i are 2i and 2i+1

Why is this useful?

 In a binary representation, a 

multiplication/division by two is left/right shift

Adding 1 can be done by adding the lowest bit



18

Insertion in a Heap

 Insert 12

 Insert 8
11

18 1921

17 13

23 26 29 3143 12

17

8



19

Another View of Insertion
 Enlarge heap

 Consider path from root to inserted node

 Find topmost element on this path with higher priority that 
that of inserted element.

 Insert new element at this location by shifting down the 
other elements on the path 11

18 1921

17 13

23 26 29 3143

12

17



20

Correctness of Insertion
 The only nodes whose contents change are the 

ones on the path.

 Heap property may be violated only for children 
of these nodes.

 But new contents of these nodes only have 
lower priority.

 So heap property not violated.
11

18 1921

17 13

23 26 29 3143

12

17



21

Heapify

 i is index into the array A

Binary trees rooted at Left(i) and Right(i) 

are heaps

But, A[i] might be smaller than its children, 

thus violating the heap property

The method Heapify makes binary tree 

rooted at i a heap by moving A[i] down the 

heap.



22

Heapify

 Heap property violated at node with index 1 but 
subtrees rooted at 2, 3 are heaps.

 heapify(1) 

11

16

19

21

10

13

23 26 29 3143

12

17



23

Another View of Heapify
 Heapify(i) traces a path down the tree.

 Last node on path (say j) has both A[left(j)], A[right(j)] are 
larger than A[i]

 All elements on path have lower priority than their siblings.

 All elements on this path are moved up.

 A[i] goes to location j.

 This establishes correctness
11

16

19

21

10

13

23 26 29 3143

12

17



24

Running time Analysis

A heap of n nodes has height O(log n).

While inserting we might have to move the 

element all the way to the top.

Hence at most O(log n) steps required.

 In Heapify, the element might be moved all 

the way to the last level.

Hence Heapify also requires O(log n) time. 


