
Stacks

Abstract Data Types (ADTs)
Stacks
Interfaces and exceptions
Java implementation of a stack
Application to the analysis of a
time series
Growable stacks
Stacks in the Java virtual
machine

Abstract Data Types (ADTs)

ADT is a mathematically specified entity
that defines a set of its instances, with:

a specific interface – a collection of signatures
of operations that can be invoked on an
instance,
a set of axioms (preconditions and
postconditions) that define the semantics of the
operations (i.e., what the operations do to
instances of the ADT, but not how)

Abstract Data Types (ADTs)

Types of operations:
Constructors
Access functions
Manipulation procedures

Abstract Data Types
Why do we need to talk about ADTs in a DS
course?

They serve as specifications of requirements for the
building blocks of solutions to algorithmic problems
Provides a language to talk on a higher level of
abstraction
ADTs encapsulate data structures and algorithms that
implement them
Separate the issues of correctness and efficiency

Example - Dynamic Sets
We will deal with ADTs, instances of which
are sets of some type of elements.

Operations are provided that change the set
We call such class of ADTs dynamic sets

Dynamic Sets (2)
An example dynamic set ADT

Methods:
New():ADT
Insert(S:ADT, v:element):ADT
Delete(S:ADT, v:element):ADT
IsIn(S:ADT, v:element):boolean

Insert and Delete – manipulation operations
IsIn – Access method method

Dynamic Sets (3)
Axioms that define the methods:

IsIn(New(), v) = false
IsIn(Insert(S, v), v) = true
IsIn(Insert(S, u), v) = IsIn(S, v), if v ≠ u
IsIn(Delete(S, v), v) = false
IsIn(Delete(S, u), v) = IsIn(S, v), if v ≠ u

Other Examples
Simple ADTs:

Queue
Deque
Stack

Stacks
A stack is a container of objects that are
inserted and removed according to the
last-in-first-out (LIFO) principle.
Objects can be inserted at any time, but
only the last (the most-recently inserted)
object can be removed.
Inserting an item is known as “pushing”
onto the stack. “Popping” off the stack is
synonymous with removing an item.

Stacks (2)
A PEZ ® dispenser as an analogy:

Stacks(3)
A stack is an ADT that supports four main
methods:

new():ADT – Creates a new stack
push(S:ADT, o:element):ADT - Inserts object o onto
top of stack S
pop(S:ADT):ADT - Removes the top object of stack
S; if the stack is empty an error occurs
top(S:ADT):element – Returns the top object of the
stack, without removing it; if the stack is empty an
error occurs

Stacks(4)
The following support methods could also
be defined:

size(S:ADT):integer - Returns the number of
objects in stack S
isEmpty(S:ADT): boolean - Indicates if stack
S is empty

Axioms
Pop(Push(S, v)) = S
Top(Push(S, v)) = v

Java Stuff
Given the stack ADT, we need to code the ADT in
order to use it in the programs. We need two
constructs: interfaces and exceptions.
An interface is a way to declare what a class is to
do. It does not mention how to do it.

For an interface, we just write down the method
names and the parameters. When specifying
parameters, what really matters is their types.
Later, when we write a class for that interface, we
actually code the content of the methods.
Separating interface and implementation is a useful
programming technique.

A Stack Interface in Java

The stack data structure is a “built-in” class of Java’s
java.util package. But we define our own stack interface:

public interface Stack {

// accessor methods
public int size();
public boolean isEmpty();
public Object top() throws StackEmptyException;

// update methods
public void push (Object element);
public Object pop() throws StackEmptyException;

}

Exceptions

Exceptions are yet another programming
construct, useful for handling errors. When we
find an error (or an exceptional case), we just
throw an exception.
As soon as the exception is thrown, the flow of
control exits from the current method and goes to
where that method was called from.
What is the point of using exceptions? We
can delegate upwards the responsibility of
handling an error. Delegating upwards means
letting the code who called the current code deal
with the problem.

More Exceptions

So when
StomachAcheException
is thrown, we exit from
method eatPizza() and
go to TA.eatpizza().

private void simulateMeeting()
{...
try

{TA.eatPizza();}
catch (StomachAcheException e)

{system.out.println(“somebody has a stomach ache”);}
...}

public void eatPizza() throws
StomachAcheException
{...
if (ateTooMuch)
throw new
StomachAcheException(“Ouch”);
...}

Even More Exceptions

The try block and the catch block means that we
are listening for exceptions that are specified in
the catch parameter.
Because catch is listening for
StomachAcheException, the flow of control will
now go to the catch block. And
System.out.println will get executed.
Note that a catch block can contain anything. It
does not have to do only System.out.println. We
can handle the caught error in any way you like;
we can even throw them again.

Exceptions (finally)
Note that if somewhere in your method, you
throw an exception, you need to add a throws
clause next to your method name.
If you never catch an exception, it will propagate
upwards and upwards along the chain of
method calls until the user sees it.
What exactly are exceptions in Java? Classes.

public class StomachAcheException extends
RuntimeException {

public StomachAcheException (String err)
{super(err);}

}

Array-Based Stack in Java
Create a stack using an array by specifying a
maximum size N for our stack.
The stack consists of an N-element array S and
an integer variable t, the index of the top
element in array S.

Array indices start at 0, so we initialize t to -1

Array-Based Stack in Java (2)
public class ArrayStack implements Stack {

// Implementation of the Stack interface using an array

public static final int CAPACITY = 1024;
// default capacity of stack

private int N; // maximum capacity of the stack
private Object S[]; // S holds the elements of the stack
private int t = -1; // the top element of the stack
public ArrayStack() // Initialize the stack with default capacity

{ this(CAPACITY) }
public ArrayStack(int cap)

// Initialize the stack with given capacity
{N = cap; S = new Object[N]}

Array-Based Stack in Java (3)
public int size() //Return the current stack size
{return (t + 1)}

public boolean isEmpty() //Return true iff the stack is empty
{return (t < 0)}

public void push(Object obj) throws StackFullException{
//Push a new element on the stack

if (size() == N)
throw new StackFullException(“Stack overflow.”)

S[++t] = obj;}

Array-Based Stack in Java (4)
public Object top() throws StackEmptyException {

// Return the top stack element
if (isEmpty())

throw new StackEmptyException(“Stack is empty.”);
return S[t]}

public Object pop() throws StackEmptyException {
// Pop off the stack element

Object elem;
if (isEmpty())

throw new StackEmptyException(“Stack is Empty.”);
elem = S[t];
S[t--] = null; // Dereference S[top] and decrement top
return elem}}

Array-Based Stack in Java (5)
The array implementation is simple and
efficient (methods performed in O(1)).
There is an upper bound, N, on the size of
the stack. The arbitrary value N may be
too small for a given application, or a
waste of memory.
StackEmptyException is required by the
interface.
StackFullException is particular to this
implementation.

Application: Time Series
The span si of a stock’s price on a certain day i is
the maximum number of consecutive days (up to
the current day) the price of the stock has been
less than or equal to its price on day i

An Inefficient Algorithm
Algorithm computeSpans1(P):
Input: an n-element array P of numbers such that P[i] is
the price of the stock on day i
Output: an n-element array S of numbers such that S[i]
is the span of the stock on day i
for i ← 0 to n - 1 do

k ← 0; done ← false
repeat

if P[i - k] ≤ P[i] then k ← k + 1
else done ← true

until (k = i) or done
S[i] ← k

return S

The running time of this algorithm is O(n2). Why?

A Stack Can Help
si can be easily computed if we know the
closest day preceding i, on which the price is
greater than the price on day i. If such a day
exists, let’s call it h(i), otherwise, we
conventionally define h(i) = -1
In the figure, h(3)=2,

h(5)=1 and h(6)=0.
The span is now

computed as si = i - h(i)

What to do with the Stack?

What are possible values of h(7)?
Can it be 1 or 3 or 4?

1 2 3 4 5 6

We store indices 2,5,6 in the stack.
To determine h(7) we compare the price on day 7 with

prices on day 6, day 5, day 2 in that order.

No, h(7) can only be 2 or 5 or 6.

The first price larger than the price on day 7 gives h(7)
The stack should be updated to reflect the price of day 7
It should now contains 2,5,7

An Efficient Algorithm
Algorithm computeSpans2(P):
Let D be an empty stack
for i ←0 to n - 1 do

k ← 0; done ← false
while not (D.isEmpty() or done) do

if P[i] ≥ P[D.top()] then D.pop()
else done ← true

if D.isEmpty() then h ← -1
else h ← D.top()

S[i] ← i - h
D.push(i)

return S

A Growable Array-Based Stack
Instead of giving up with a StackFullException, we can
replace the array S with a larger one and continue
processing push operations.

Algorithm push(o)
if size() = N then A ← new array of length f(N)
for i ← 0 to N – 1

A[i] ← S[i]
S ← A; t ← t + 1
S[t] ← o

How large should the new array be?
tight strategy (add a constant): f(N) = N + c
growth strategy (double up): f(N) = 2N

Tight vs. Growth Strategies:
a comparison

To compare the two strategies, we use the
following cost model:
A regular push operation: adds one
element and cost one unit.
A special push operation: create an array
of size f(N), copy N elements, and add one
element. Costs f(N)+N+1 units

Tight Strategy (c=4)
start with an array of size 0. cost of a special push is 2N + 5

a b c d e f g h i k l m n

a b c d e f g h i k

a b c d e f g h i k l

a b c d e f g h i k l m

a b c d e f g

a b c d e f g h

a b c d e f g h i

a b c

a b c d

a b c d e

a b c d e f

a

a b

4+1

1

1

1
8+4+1

1

1

1

12+8+1
1
1
1

16+12+1

Phase 1

Phase 2

Phase 3

Performance of the Tight Strategy
In phase i the array has size c×i
Total cost of phase i is

c×i is the cost of creating the array
c×(i-1) is the cost of copying elements into new array
c is the cost of the c pushes.

Hence, cost of phase i is 2ci
In each phase we do c pushes. Hence for n
pushes we need n/c phases. Total cost of these
n/c phases is

= 2c (1 + 2 + 3 + ... + n/c) ≈ O(n2/c)

Growth Strategy
start with an array of size 0. cost of a special push is 3N + 1

a b c d e f g h i k l m

a b c d e f g

a b c d e f g h

a b c

a b c d

a b c d e

a b c d e f

a

a b

1+0+1

2+1+1

4+2+1

1
8+4+1

1

1

1

16+8+1

Phase 2

Phase 3

Phase 4a b c d e f g h i k l

a b c d e f g h i

a b c d e f g h i k

a b c d e f g h i k l m n

1

1

1
1

Phase 0
Phase 1

Performance of the Growth Strategy
In phase i the array has size 2i

Total cost of phase i is
2i is the cost of creating the array
2i-1 is the cost of copying elements into new array
2i-1 is the cost of the 2i-1 pushes done in this phase

Hence, cost of phase i is 2i+1.
If we do n pushes, we will have log n phases.
Total cost of n pushes

= 2 + 4 + 8 + ... + 2log n+1 = 4n – 1
The growth strategy wins!

Stacks in the Java Virtual Machine

Each process running in a Java program
has its own Java Method Stack.
Each time a method is called, it is pushed
onto the stack.
The choice of a stack for this operation
allows Java to do several useful things:

Perform recursive method calls
Print stack traces to locate an error

Java Method Stack

	Stacks
	Abstract Data Types (ADTs)
	Abstract Data Types (ADTs)
	Abstract Data Types
	Example - Dynamic Sets
	Dynamic Sets (2)
	Dynamic Sets (3)
	Other Examples
	Stacks
	Stacks (2)
	Stacks(3)
	Stacks(4)
	Java Stuff
	A Stack Interface in Java
	Exceptions
	More Exceptions
	Even More Exceptions
	Exceptions (finally)
	Array-Based Stack in Java
	Array-Based Stack in Java (2)
	Array-Based Stack in Java (3)
	Array-Based Stack in Java (4)
	Array-Based Stack in Java (5)
	Application: Time Series
	An Inefficient Algorithm
	A Stack Can Help
	What to do with the Stack?
	An Efficient Algorithm
	A Growable Array-Based Stack
	Tight vs. Growth Strategies: �a comparison
	Tight Strategy (c=4)
	Performance of the Tight Strategy
	Growth Strategy
	Performance of the Growth Strategy
	Stacks in the Java Virtual Machine
	Java Method Stack

