
1

Data Compression

File Compression
Huffman Tries

ABRACADABRA
01011011010000101001011011010

2

File Compression
Text files are usually stored by representing each
character with an 8-bit ASCII code (type man ascii in a
Unix shell to see the ASCII encoding)
The ASCII encoding is an example of fixed-length
encoding, where each character is represented with
the same number of bits
In order to reduce the space required to store a text
file, we can exploit the fact that some characters are
more likely to occur than others
variable-length encoding uses binary codes of
different lengths for different characters; thus, we can
assign fewer bits to frequently used characters, and
more bits to rarely used characters.

3

File Compression: Example

An Encoding Example
text: java
encoding: a = “0”, j = “11”, v = “10”
encoded text: 110100 (6 bits)

How to decode (problems in ambiguity)?
encoding: a = “0”, j = “01”, v = “00”
encoded text: 010000 (6 bits)
could be "java", or "jvv", or "jaaaa"

4

Encoding Trie

To prevent ambiguities in decoding, we require
that the encoding satisfies the prefix rule: no
code is a prefix of another.

a = “0”, j = “11”, v = “10” satisfies the prefix rule
a = “0”, j = “01”, v= “00” does not satisfy the
prefix rule (the code of 'a' is a prefix of the
codes of 'j' and 'v')

5

Encoding Trie(2)
We use an encoding trie to satisfy this prefix rule

the characters are stored at the external
nodes.
a left child (edge) means 0
a right child (edge) means 1

6

Example of Decoding

trie

• encoded text: 01011011010000101001011011010
• text:

ABRACADABRA

7

Trie this!

10000111110010011000111011110001010100110
100

8

Optimal Compression
An issue with encoding tries is to ensure that the encoded
text is as short as possible:

ABRACADABRA
0101101101000010100101101010
29 bits

ABRACADABRA
001011000100001100101100
24 bits

9

Construction algorithm
Given frequencies of characters we wish
to compute a trie so that the length of the
encoding is minimum possible.
Each character is a leaf of the trie
The number of bits used to encode a
character is its level number (root is 0).
Thus if fi is the frequency of the ith
character and li is the level of the leaf
corresponding to it then we want to find a
tree which minimises ∑i fili

10

Total weighted external path length

The quantity ∑i fili is called the total external
weighted path length of a tree.
We view each leaf as having a weight equal to
the frequency of the corresponding character.
Given weights f1,f2,…,fn we wish to find a tree
whose weighted external path length is
minimum.
We denote this by WEPL(f1,f2,…, fn)

11

Huffman Encoding Trie

5 2 2

1 1

2
A B R

C D

5

2 2 1 1

24

B R C D
A

2 2 1 1

24

5 6
A

B R C D

1 1

C D

5 2 2

B R
frequency
character

ABRA CAD ABRA
A

12

Huffman Encoding Trie (contd.)

R DCB

A

0

1

0 1

0

0

11

5

11

4 2

6

2 2 1 1

2 2 1 1

24

5 6
A

B R C D

13

Final Huffman Encoding Trie

A B R A C A D A B R A
0 100 101 0 110 0 111 0 100 1010
23 bits

14

Another Huffman Encoding Trie

5 2 2

1 1

2
A B R

C D

1 1

C D

5 2 2

B R
frequency

character
ABRA CAD ABRA

A

5
A

1 1

2

C D

2
R

42
B

15

Another Huffman Encoding Trie
5
A

1 1

2

C D

2
R

42
B

1 1

2

C D

2
R

42
B

65
A

16

Another Huffman Encoding Trie

11

1 1

2

C D

2
R

42
B

65
A

5
A

1 1

2

C D

2
R

42
B

6

17

Another Huffman Encoding Trie

A B R A C A D A B R A
0 10 110 0 1100 0 1111 0 10 110 0
23 bits

18

Correctness of the algorithm
Why does this algorithm compute a tree
with the minimum weighted external path
length?
We prove this by induction on the number
of leaves/characters.
The claim is true when we have only two
leaves.
Suppose claim is true when we have n-1
characters.

19

Correctness of the algorithm(2)
When we have n characters at the first step we
replace the two characters with frequencies
f1,f2 with one character of frequency f1+f2.
Beyond this point the algorithm behaves as if it
had only n-1 characters. Hence it computes a
tree with min. total weighted external path
length i.e. WEPL(f1+f2, f3,…fn)
Hence the tree computed has weighted
external path length f1+f2+ WEPL(f1+f2, f3,…fn)

20

Correctness of the algorithm(3)

We now argue that
WEPL(f1,f2, f3,…fn) = f1+f2+ WEPL(f1+f2, f3,…fn)

This follows from the fact that in the optimum
tree the leaves with the two lowest weights are
siblings

	Data Compression
	File Compression
	File Compression: Example
	Encoding Trie
	Encoding Trie(2)
	Example of Decoding
	Trie this!
	Optimal Compression
	Construction algorithm
	Total weighted external path length
	Huffman Encoding Trie
	Huffman Encoding Trie (contd.)
	Final Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Another Huffman Encoding Trie
	Correctness of the algorithm
	Correctness of the algorithm(2)
	Correctness of the algorithm(3)

