
1

Tries
 Standard Tries

 Compressed Tries

 Suffix Tries

2

Text Processing

 We have seen that preprocessing the pattern

speeds up pattern matching queries

 After preprocessing the pattern in time

proportional to the pattern length, the KMP

algorithm searches an arbitrary English text in

time proportional to the text length

 If the text is large, immutable and searched for

often (e.g., works by Shakespeare), we may want

to preprocess the text instead of the pattern in

order to perform pattern matching queries in time

proportional to the pattern length.

3

Standard Tries

 The standard trie for a set of strings S is an ordered
tree such that:

each node but the root is labeled with a character

 the children of a node are alphabetically ordered

 the paths from the external nodes to the root yield
the strings of S

 Eg. S = { bear, bell, bid, bull, buy, sell, stock, stop }

4

Running time for operations

A standard trie uses O(W) space.

Operations (find, insert, remove) take time

O(dm) each, where:

W = total size of the strings in S,

m = size of the string involved in the operation

d = alphabet size,

5

Applications of Tries

A standard trie supports the following
operations on a preprocessed text in time
O(m), where m = |X|

word matching: find the first occurence
of word X in the text

prefix matching: find the first occurrence
of the longest prefix of word X in the text

Each operation is performed by tracing a
path in the trie starting at the root

6

7

Compressed Tries

 Trie with nodes of degree at least 2

 Obtained from standard trie by compressing
chains of redundant nodes.

Compressed Trie:

Standard Trie:

8

Why Compressed Tries ?

A tree in which every node has at least 2

children has at most L-1 internal nodes,

where L is the number of leaves.

The number of nodes in a compressed

trie is O(s), where s = |S|.

The label in each node can be stored by

using O(1) space index ranges at the

nodes

9

10

Insertion/Deletion in Compressed Tries

11

Tries and Web Search Engines

 The index of a search engine (collection of all searchable
words) is stored into a compressed trie

 Each leaf of the trie is associated with a word and has a
list of pages (URLs) containing that word, called
occurrence list

 The trie is kept in internal memory

 The occurrence lists are kept in external memory and are
ranked by relevance

 Boolean queries for sets of words (e.g., Java and coffee)
correspond to set operations (e.g., intersection) on the
occurrence lists

 Additional information retrieval techniques are used, such
as
 stopword elimination (e.g., ignore “the” “a” “is”)

 stemming (e.g., identify “add” “adding” “added”)

 link analysis (recognize authoritative pages)

12

Tries and Internet Routers

 Computers on the internet (hosts) are identified by a
unique 32-bit IP (internet protocol) address, usually
written in “dotted-quad-decimal” notation

 E.g., www.google.com is 64.233.189.104

 Use nslookup on Unix to find out IP addresses

 An organization uses a subset of IP addresses with the
same prefix, e.g., IITD uses 10.*.*.*

 Data is sent to a host by fragmenting it into packets.
Each packet carries the IP address of its destination.

 A router forwards packets to its neighbors using IP
prefix matching rules.

 Routers use tries on the alphabet 0,1 to do prefix
matching.

13

Back to Pattern Matching

 Instead of preprocessing the pattern P,
preprocess the text T !

 Use a tree structure where all suffixes of the
text are represented;

 Search for the pattern by looking for
substrings of the text;

 You can easily test whether P is a substring of
T because any substring of T is the prefix of
some suffix of T .

14

Suffix Tree

 A suffix tree T for string S is a rooted directed tree whose

edges are labeled with nonempty substrings of S.

 Each leaf corresponds to a suffix of S in the sense that

the concatenation of the edge-labels on the unique path

from the root to the leaf spells out this suffix.

 Each internal node, other than the root, has at least two

children.

 No two out-edges of

a node can have edge-labels

with the same first character.

3
6 2

x a b x a c

4
c

c
c

1

5

Suffix tree for string xabxac.

15

Suffix Tree (2)

 A suffix tree is essentially a compressed trie for all the

suffixes of a text

 The suffix tree for a text X of size n from an alphabet of

size d stores all the n suffixes of X in O(n) space.

16

Compact Representation

17

Note on Suffix Tree

If two suffixes have a same prefix, then their
corresponding paths are the same at their
beginning, and the concatenation of the edge
labels of the mutual part is the prefix.

3
6 2

x a b x a c

4
c

c
c

1

5

Suffix tree for string xabxac.

For example, suffix xabxac

and suffix xac have the same

prefix, xa.

18

Note on Suffix Tree

 Not all strings guaranteed to have corresponding
suffix trees

 For example:

consider xabxa: it does not have a suffix tree,
because here suffix xa is also a prefix of another
suffix, xabxa.

(The path spelling out xa would not end at a
leaf.)

 How to fix the problem: add $ - a special
“termination” character to the alphabet.

19

Building a Suffix Tree

The method starts from a single edge for suffix S[1..n], then

it successively enters the edges for suffix S[i..n] into the

growing tree, for i increasing from 2 to n.

The general step of the algorithm

Enter the edge for suffix S[i..n] into the tree as follows.

Starting at the root find the longest path from the root

whose label matches a prefix of S[i..n]. At some point, no

further matches are possible.

If this point is at a node, then denote this node by w.

If it is in the middle of an edge, then insert a new

node, called w, at this point.

Create a new edge running from w to a new leaf labeled

S[i..n].

20

Example

3

2

4

c

6

c

x a b x a c

1

c

5

Building suffix tree for string xabxac.

Time complexity: O(n2)

21

Suffix Trees in Pattern Matching

Given a string P (pattern) and a longer string T

(text).Our aim is to find all occurrences of pattern P

in text T.

The idea of the algorithm is that every occurrence

of P in T is a prefix of a suffix of T,

Thus, an occurrence of P in T can be obtained as

the of the labels of edges along the path beginning

concatenation at the root.

22

Suffix Trees in Pattern Matching

 Build a suffix tree T for text T.

 Match the characters of P along the unique path in

T beginning at the root until
 P is exhausted or

 no more matches are possible

In case 2, P does not appear anywhere in T.

In case 1, P is a prefix of a suffix

obtained by extending the path until we reach a leaf.

Each extension gives a suffix a prefix of which is P,

thus, each extension provides an occurrence of P in T.

23

Example

Find all occurences of P = aw

in T = awyawxawxz.

awyawxawxz

awxz awxawxz awyawxawxz

Root

24

Constructing a Suffix Trees

A suffix tree can be constructed in linear

time

[Weiner73, McCreight76, Ukkonen95]

25

Complexity of Pattern matching

Time complexity

Preprocessing : O(|T|)

Searching : O(|P| + k),

where k is # occurences of P in T

Space complexity

O(|P| + |T|)

