
1

Case Study: Searching for Patterns

Problem: find all occurrences of pattern

P of length m inside the text T of

length n.

 Exact matching problem

2

String Matching - Applications

Text editing

Term rewriting

 Lexical analysis

 Information retrieval

And, bioinformatics

3

a g c a g a a g a g t aT

P ga gg a ga g a gP ga gg a ga g a gP ga gg a ga g a gP ga gg a ga g a gP ga gg a ga g a gP ga gg a ga g a gP ga gg a ga g a g

Exact matching problem

Given a string P (pattern) and a longer string T (text).
Aim is to find all occurrences of pattern P in text T.

The naive method:

Time complexity = O(m.n),

Space complexity = O(m + n)

If m is the length of P, and n is the length of T, then

4

Can we be more clever ?

 When a mismatch is detected, say at position

k in the pattern string, we have already

successfully matched k-1 characters.

 We try to take advantage of this to decide

where to restart matching

a g c a g a a g a g t aT

P ga gg a ga g a gP ga gg a ga g a gP ga gg a ga g a gP ga gg a ga g a gP ga gg a ga g a g

5

The Knuth-Morris-Pratt Algorithm

Observation: when a mismatch occurs, we
may not need to restart the comparison all way
back (from the next input position).

What to do:

Constructing an array h, that determines how
many characters to shift the pattern to the right
in case of a mismatch during the pattern-
matching process.

6

The key idea is that if we have
successfully matched the prefix P[1…i-
1] of the pattern with the substring T[j-
i+1,…,j-1] of the input string and P(i) 
T(j), then we do not need to reprocess
any of the suffix T[j-i+1,…,j-1] since we
know this portion of the text string is
the prefix of the pattern that we have
just matched.

KMP (2)

7

For each position i in pattern P, define hi to be

the length of the longest proper suffix of P[1,…,i]

that matches a prefix of P.

1 2 3 4 5 6 7 8 9 10 11 12 13

Pattern: a b a a b a b a a b a a b

i = 11

Hence, h(11) = 6.

If there is no proper suffix of P[1,…,i] with the

property mentioned above, then h(i) = 0.

The failure function h

8

a b a a b a b a a b a a b

The KMP shift rule

a b a a b a b a a b a a b

a b a a b a b a a b a c a b a a b a b a a bT:

P:

P:

The first mismatch in position

k=12 of T and in pos. i+1=12 of P.

h11 = 6

Shift P to the right so that P[1,…,h(i)] aligns with the suffix

T[k- h(i),…,k-1].

They must match because of the definition of h.

In other words, shift P exactly i – h(i) places to the right.

If there is no mismatch, then shift P by m – h(m) places to

the right.

9

missed occurrence of P

The KMP algorithm finds all occurrences of

P in T.

P before shift

P after shift

First mismatch in position

k of T and in pos. i+1 of P.




Suppose not, …

T:

10

Correctness of KMP.

P before shift

P after shift

missed occurrence of P

First mismatch in position

k of T and in pos. i+1 of P.









|| > || = h(i)

T:

It is a contradiction.

T(k)

11

An Example

1 2 3 4 5 6 7 8 9 10 11 12 13

Pattern: a b a a b a b a a b a a b

Next funciton: 0 1 0 2 1 0 4 0 2 1 0 7 1

abaababaabacabaababaabaab.

Given:

Input string:

a b a a b a b a a b a a b

a b a a b a b a a b a c a b a a b a b a a b a a b

Scenario 1:
i+1 = 12

k = 12

Scenario 2: i+1

k

i = 6 , h(6)= 3

a b a a b a b a a b a a b

a b a a b a b a a b a c a b a a b a b a a b a a b

Array h: 0 0 1 1 2 3 2 3 4 5 6 4 5

What is h(i)= h(11) = ? h(11) = 6  i – h(i) = 11 – 6 = 5

12

An Example

Scenario 3: i+1

k

i = 3, h(3) = 1

Subsequently i = 2, 1, 0

Finally, a match is found:

a b a a b a b a a b a a b

a b a a b a b a a b a c a b a a b a b a a b a a b

i+1

k

a b a a b a b a a b a a b

a b a a b a b a a b a c a b a a b a b a a b a a b

13

Complexity of KMP

In the KMP algorithm, the number of character

comparisons is at most 2n.

Hence #comparisons  #shifts + |T|  2|T| = 2n.

P before shift

P after shift

T:

In any shift at most one comparison involves a

character of T that was previously compared.

no backtrackAfter shift, no character will be

compared before this position

14

Computing the failure function
 We can compute h(i+1) if we know h(1)..h(i)

 To do this we run the KMP algorithm where the text is
the pattern with the first character replaced with a $.

 Suppose we have successfully matched a prefix of the
pattern with a suffix of T[1..i]; the length of this match is
h(i).

 If the next character of the pattern and text match then
h(i+1)=h(i)+1.

 If not, then in the KMP algorithm we would shift the
pattern; the length of the new match is h(h(i)).

 If the next character of the pattern and text match then
h(i+1)=h(h(i))+1, else we continue to shift the pattern.

 Since the no. of comparisons required by KMP is length
of pattern+text, time taken for computing the failure
function is O(n).

15

Computing h: an example

 h(12)= 4 = h(6)+1 = h(h(11))+1

 h(13)= 5 = h(12)+1

Given:

Pattern: a b a a b a

Pattern:Failure function h: 0 0 1 1 2 3 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

$ b a a b a b a a b a a bText:

b

a

h(11)=6

h(6)=3a b aPattern

4

b

5

16

KMP - Analysis

The KMP algorithm never needs to

backtrack on the text string.

Time complexity = O(m + n)

Space complexity = O(m + n),

where m =|P| and n=|T|.

preprocessing searching

