
Disk Based Data Structures
So far search trees were limited to main
memory structures

Assumption: the dataset organized in a search tree
fits in main memory (including the tree overhead)

Counter-example: transaction data of a bank >
1 GB per day

use secondary storage media (punch cards, hard
disks, magnetic tapes, etc.)

Consequence: make a search tree structure
secondary-storage-enabled

Hard Disks

Large amounts of
storage, but slow
access!
Identifying a page
takes a long time (seek
time plus rotational
delay – 5-10ms),
reading it is fast

It pays off to read or
write data in pages (or
blocks) of 2-16 Kb in
size.

Algorithm analysis
The running time of disk-based algorithms is
measured in terms of

computing time (CPU)
number of disk accesses

sequential reads
random reads

Regular main-memory algorithms that work one
data element at a time can not be “ported” to
secondary storage in a straight-forward way

Principles

Pointers in data structures are no longer
addresses in main memory but
locations in files
If x is a pointer to an object

if x is in main memory key[x] refers to it
otherwise DiskRead(x) reads the object
from disk into main memory (DiskWrite(x) –
writes it back to disk)

Principles (2)

A typical working pattern

Operations:
DiskRead(x:pointer_to_a_node)
DiskWrite(x:pointer_to_a_node)
AllocateNode():pointer_to_a_node

01 …
02 x ← a pointer to some object
03 DiskRead(x)
04 operations that access and/or modify x
05 DiskWrite(x) //omitted if nothing changed
06 other operations, only access no modify
07 …

Binary-trees vs. B-trees

1000

1000 1000 1000…
1001

1000 1000 1000…
1001 10011001

1 node
1000 keys

1001 nodes,
1,001,000 keys

1,002,001 nodes,
1,002,001,000 keys

Size of B-tree nodes is determined by the page
size. One page – one node.
A B-tree of height 2 may contain > 1 billion keys!
Heights of Binary-tree and B-tree are logarithmic

B-tree: logarithm of base, e.g., 1000
Binary-tree: logarithm of base 2

B-tree Definitions

Node x has fields
n[x]: the number of keys of that the node
key1[x] ≤ … ≤ keyn[x][x]: the keys in ascending order
leaf[x]: true if leaf node, false if internal node
if internal node, then c1[x], …, cn[x]+1[x]: pointers to
children

Keys separate the ranges of keys in the sub-
trees. If ki is an arbitrary key in the subtree ci[x]
then ki≤ keyi[x] ≤ ki+1

B-tree Definitions (2)

Every leaf has the same depth
In a B-tree of a degree t all nodes except
the root node have between t and 2t
children (i.e., between t–1 and 2t–1 keys).
The root node has between 0 and 2t
children (i.e., between 0 and 2t–1 keys)

B-tree T of height h, containing n ≥ 1 keys and
minimum degree t ≥ 2, the following restriction
on the height holds:

Height of a B-tree

1log
2t

nh +
≤

1

1

1 (1) 2 2 1
h

i h

i

n t t t−

=

≥ + − = −∑

1

t - 1 t - 1

t - 1 t - 1 t - 1…

tt

t - 1 t - 1 t - 1…

0 1

1 2

2 2t

depth #of
nodes

B-tree Operations

An implementation needs to suport the
following B-tree operations

Searching (simple)
Creating an empty tree (trivial)
Insertion (complex)
Deletion (complex)

Searching

Straightforward generalization of a binary
tree search

BTreeSearch(x,k)
01 i ← 1
02 while i ≤ n[x] and k > keyi[x]
03 i ← i+1
04 if i ≤ n[x] and k = keyi[x] then
05 return(x,i)
06 if leaf[x] then
08 return NIL
09 else DiskRead(ci[x])
10 return BTtreeSearch(ci[x],k)

Creating an Empty Tree

Empty B-tree = create a root & write it to
disk!

BTreeCreate(T)
01 x ← AllocateNode();
02 leaf[x] ← TRUE;
03 n[x] ← 0;
04 DiskWrite(x);
05 root[T] ← x

Splitting Nodes

Nodes fill up and reach their maximum
capacity 2t – 1
Before we can insert a new key, we have
to “make room,” i.e., split nodes

Splitting Nodes (2)

P Q R S T V W

T1 T8...

... N W ...

y = ci[x]

x

... N S W ...

x

P Q R T V W

y = ci[x] z = ci+1[x]

Result: one key of x moves up to parent +
2 nodes with t-1 keys

Splitting Nodes (2)
BTreeSplitChild(x,i,y)

z ← AllocateNode()
leaf[z] ← leaf[y]
n[z] ← t-1
for j ← 1 to t-1

keyj[z] ← keyj+t[y]
if not leaf[y] then

for j ← 1 to t
cj[z] ← cj+t[y]

n[y] ← t-1
for j ← n[x]+1 downto i+1

cj+1[x] ← cj[x]
ci+1[x] ← z
for j ← n[x] downto i

keyj+1[x] ← keyj[x]
keyi[x] ← keyt[y]
n[x] ← n[x]+1
DiskWrite(y)
DiskWrite(z)
DiskWrite(x)

x: parent node
y: node to be split and child of x
i: index in x
z: new node

P Q R S T V W

T1 T8...

... N W ...

y = ci[x]

x

Split: Running Time

A local operation that does not traverse
the tree
Θ(t) CPU-time, since two loops run t times
3 I/Os

Inserting Keys

Done recursively, by starting from the root
and recursively traversing down the tree to
the leaf level
Before descending to a lower level in the
tree, make sure that the node contains <
2t – 1 keys:

so that if we split a node in a lower level we
will have space to include a new key

Inserting Keys (2)

Special case: root is full (BtreeInsert)

BTreeInsert(T)
r ← root[T]
if n[r] = 2t – 1 then

s ← AllocateNode()
root[T] ← s
leaf[s] ← FALSE
n[s] ← 0
c1[s] ← r
BTreeSplitChild(s,1,r)
BTreeInsertNonFull(s,k)

else BTreeInsertNonFull(r,k)

Splitting the root requires the creation of a
new root

The tree grows at the top instead of the
bottom

Splitting the Root

A D F H L N P

T1 T8...

root[T]
r

A D F L N P

H

root[T]
s

r

Inserting Keys

BtreeNonFull tries to insert a key k into
a node x, which is assumed to be non-
full when the procedure is called
BTreeInsert and the recursion in
BTreeInsertNonFull guarantee that this
assumption is true!

Inserting Keys: Pseudo Code
BTreeInsertNonFull(x,k)
01 i ← n[x]
02 if leaf[x] then
03 while i ≥ 1 and k < keyi[x]
04 keyi+1[x] ← keyi[x]
05 i ← i - 1
06 keyi+1[x] ← k
07 n[x] ← n[x] + 1
08 DiskWrite(x)
09 else while i ≥ 1 and k < keyi[x]
10 i ← i - 1
11 i ← i + 1
12 DiskRead ci[x]
13 if n[ci[x]] = 2t – 1 then
14 BTreeSplitChild(x,i,ci[x])
15 if k > keyi[x] then
16 i ← i + 1
17 BTreeInsertNonFull(ci[x],k)

leaf insertion

internal node:
traversing tree

Insertion: Example

G M P X

A C D E J K R S T U VN O Y Z

G M P X

A B C D E J K R S T U VN O Y Z

G M P T X

A B C D E J K Q R SN O Y ZU V

initial tree (t = 3)

B inserted

Q inserted

Insertion: Example (2)

G M

A B C D E J K L Q R SN O Y ZU V

T X

P

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E F

L inserted

F inserted

Insertion: Running Time

Disk I/O: O(h), since only O(1) disk
accesses are performed during recursive
calls of BTreeInsertNonFull
CPU: O(th) = O(t logtn)
At any given time there are O(1) number
of disk pages in main memory

Deleting Keys
Done recursively, by starting from the root and
recursively traversing down the tree to the leaf
level
Before descending to a lower level in the tree,
make sure that the node contains ≥ t keys (cf.
insertion < 2t – 1 keys)
BtreeDelete distinguishes three different
stages/scenarios for deletion

Case 1: key k found in leaf node
Case 2: key k found in internal node
Case 3: key k suspected in lower level node

Case 1: If the key k is in node x, and x is a leaf,
delete k from x

Deleting Keys (2)

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E F

initial tree

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E

F deleted:
case 1

x

Deleting Keys (3)

C G L

A B J K Q R SN O Y ZU V

T X

P

D E

M deleted:
case 2a

Case 2: If the key k is in node x, and x is not a
leaf, delete k from x

a) If the child y that precedes k in node x has at least t
keys, then find the predecessor k’ of k in the sub-tree
rooted at y. Recursively delete k’, and replace k with
k’ in x.
b) Symmetrically for successor node z

x

y

Deleting Keys (4)

If both y and z have only t –1 keys, merge k with
the contents of z into y, so that x loses both k
and the pointers to z, and y now contains 2t – 1
keys. Free z and recursively delete k from y.

C L

A B D E J K Q R SN O Y ZU V

T X

PG deleted:
case 2c

y = y+k + z - k

x - k

Deleting Keys - Distribution

Descending down the tree: if k not found in
current node x, find the sub-tree ci[x] that has to
contain k.
If ci[x] has only t – 1 keys take action to ensure
that we descent to a node of size at least t.
We can encounter two cases.

If ci[x] has only t-1 keys, but a sibling with at least t
keys, give ci[x] an extra key by moving a key from x to
ci[x], moving a key from ci[x]’s immediate left and right
sibling up into x, and moving the appropriate child from
the sibling into ci[x] - distribution

Deleting Keys – Distribution(2)

C L P T X

A B E J K Q R SN O Y ZU Vci[x]

x

sibling

delete B

B deleted: E L P T X

A C J K Q R SN O Y ZU V

... k’ ...

... k

A B

ci[x]

x ... k ...

... k’

A

ci[x]

B

Deleting Keys - Merging

If ci[x] and both of ci[x]’s siblings have t – 1
keys, merge ci with one sibling, which
involves moving a key from x down into
the new merged node to become the
median key for that node

x ... l’ m’ ...

...l k m ...

A B

x ... l’ k m’...

... l m …

A B

ci[x]

Deleting Keys – Merging (2)

tree shrinks in height

D deleted:
C L P T X

A B E J K Q R SN O Y ZU V

C L

A B D E J K Q R SN O Y ZU V

T X

P

delete D ci[x] sibling

Deletion: Running Time

Most of the keys are in the leaf, thus deletion
most often occurs there!
In this case deletion happens in one downward
pass to the leaf level of the tree
Deletion from an internal node might require
“backing up” (case 2)
Disk I/O: O(h), since only O(1) disk operations
are produced during recursive calls
CPU: O(th) = O(t logtn)

Two-pass Operations
Simpler, practical versions of algorithms
use two passes (down and up the tree):

Down – Find the node where deletion or
insertion should occur
Up – If needed, split, merge, or distribute;
propagate splits, merges, or distributes up the
tree

To avoid reading the same nodes twice,
use a buffer of nodes

	Disk Based Data Structures
	Slide Number 2
	Hard Disks
	Algorithm analysis
	Principles
	Principles (2)
	Binary-trees vs. B-trees
	B-tree Definitions
	B-tree Definitions (2)
	Height of a B-tree
	B-tree Operations
	Searching
	Creating an Empty Tree
	Splitting Nodes
	Splitting Nodes (2)
	Splitting Nodes (2)
	Split: Running Time
	Inserting Keys
	Inserting Keys (2)
	Splitting the Root
	Inserting Keys
	Inserting Keys: Pseudo Code
	Insertion: Example
	Insertion: Example (2)
	Insertion: Running Time
	Deleting Keys
	Deleting Keys (2)
	Deleting Keys (3)
	Slide Number 29
	Slide Number 30
	Deleting Keys (4)
	Deleting Keys - Distribution
	Deleting Keys – Distribution(2)
	Deleting Keys - Merging
	Deleting Keys – Merging (2)
	Deletion: Running Time
	Two-pass Operations

