
Disk Based Data Structures
So far search trees were limited to main 
memory structures

Assumption: the dataset organized in a search tree 
fits in main memory (including the tree overhead)

Counter-example: transaction data of a bank > 
1 GB per day

use secondary storage media (punch cards, hard 
disks, magnetic tapes, etc.)

Consequence: make a search tree structure 
secondary-storage-enabled





Hard Disks

Large amounts of 
storage, but slow 
access!
Identifying a page 
takes a long time (seek 
time plus rotational 
delay – 5-10ms), 
reading it is fast

It pays off to read or 
write data in pages (or 
blocks) of 2-16 Kb in 
size.



Algorithm analysis 
The running time of disk-based algorithms is 
measured in terms of

computing time (CPU) 
number of disk accesses  

sequential reads
random reads

Regular main-memory algorithms that work one 
data element at a time can not be “ported” to 
secondary storage in a straight-forward way



Principles

Pointers in data structures are no longer 
addresses in main memory but 
locations in files
If x is a pointer to an object

if x is in main memory key[x] refers to it
otherwise DiskRead(x) reads the object 
from disk into main memory (DiskWrite(x) –
writes it back to disk)



Principles (2)

A typical working pattern

Operations:
DiskRead(x:pointer_to_a_node)
DiskWrite(x:pointer_to_a_node)
AllocateNode():pointer_to_a_node

01 …
02 x ← a pointer to some object
03 DiskRead(x)
04 operations that access and/or modify x
05 DiskWrite(x) //omitted if nothing changed
06 other operations, only access no modify
07 …



Binary-trees vs. B-trees

1000

1000 1000 1000…
1001

1000 1000 1000…
1001 10011001

1 node
1000 keys

1001 nodes,
1,001,000 keys

1,002,001 nodes,
1,002,001,000 keys

Size of B-tree nodes is determined by the page 
size. One page – one node.
A B-tree of height 2 may contain > 1 billion keys!
Heights of Binary-tree and B-tree are logarithmic

B-tree: logarithm of base, e.g., 1000
Binary-tree: logarithm of base 2



B-tree Definitions

Node x has fields
n[x]: the number of keys of that the node
key1[x] ≤ … ≤ keyn[x][x]: the keys in ascending order
leaf[x]: true if leaf node, false if internal node
if internal node, then c1[x], …, cn[x]+1[x]: pointers to 
children

Keys separate the ranges of keys in the sub-
trees. If ki is an arbitrary key in the subtree ci[x] 
then ki≤ keyi[x] ≤ ki+1



B-tree Definitions (2)

Every leaf has the same depth 
In a B-tree of a degree t all nodes except 
the root node have between t and 2t
children (i.e., between t–1 and 2t–1 keys). 
The root node has between 0 and 2t
children (i.e., between 0 and 2t–1 keys)



B-tree T of height h, containing n ≥ 1 keys and 
minimum degree t ≥ 2, the following restriction 
on the height holds:

Height of a B-tree
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B-tree Operations

An implementation needs to suport the 
following B-tree operations 

Searching (simple)
Creating an empty tree (trivial)
Insertion (complex)
Deletion (complex)



Searching

Straightforward generalization of a binary 
tree search

BTreeSearch(x,k)
01 i ← 1
02 while i ≤ n[x] and k > keyi[x]
03 i ← i+1
04 if i ≤ n[x] and k = keyi[x] then
05 return(x,i)
06 if leaf[x] then
08 return NIL
09 else DiskRead(ci[x])
10 return BTtreeSearch(ci[x],k)



Creating an Empty Tree

Empty B-tree = create a root & write it to 
disk!

BTreeCreate(T)
01 x ← AllocateNode();
02 leaf[x] ← TRUE;
03 n[x] ← 0;
04 DiskWrite(x);
05 root[T] ← x



Splitting Nodes

Nodes fill up and reach their maximum 
capacity 2t – 1
Before we can insert a new key, we have 
to “make room,” i.e., split nodes



Splitting Nodes (2)

P   Q   R   S   T   V   W

T1 T8...

...   N   W   ...

y = ci[x]

x

...   N   S   W   ...

x

P   Q   R T   V   W

y = ci[x] z = ci+1[x]

Result: one key of x moves up to parent + 
2 nodes with t-1 keys



Splitting Nodes (2)
BTreeSplitChild(x,i,y)

z ← AllocateNode()
leaf[z] ← leaf[y]
n[z] ← t-1
for j ← 1 to t-1

keyj[z] ← keyj+t[y]
if not leaf[y] then

for j ← 1 to t
cj[z] ← cj+t[y]

n[y] ← t-1
for j ← n[x]+1 downto i+1

cj+1[x] ← cj[x]
ci+1[x] ← z
for j ← n[x] downto i

keyj+1[x] ← keyj[x]
keyi[x] ← keyt[y]
n[x] ← n[x]+1
DiskWrite(y)
DiskWrite(z)
DiskWrite(x)

x: parent node
y: node to be split and child of x
i: index in x
z: new node

P   Q   R   S   T   V   W

T1 T8...

...   N   W   ...

y = ci[x]

x



Split: Running Time

A local operation that does not traverse 
the tree
Θ(t) CPU-time, since two loops run t times
3 I/Os 



Inserting Keys

Done recursively, by starting from the root 
and recursively traversing down the tree to 
the leaf level 
Before descending to a lower level in the 
tree, make sure that the node contains < 
2t – 1 keys:

so that if we split a node in a lower level we 
will have space to include a new key



Inserting Keys (2)

Special case: root is full (BtreeInsert)

BTreeInsert(T)
r ← root[T]
if n[r] = 2t – 1 then

s ← AllocateNode()
root[T] ← s
leaf[s] ← FALSE
n[s] ← 0
c1[s] ← r
BTreeSplitChild(s,1,r)
BTreeInsertNonFull(s,k)

else BTreeInsertNonFull(r,k)



Splitting the root requires the creation of a  
new root

The tree grows at the top instead of the 
bottom

Splitting the Root

A   D   F   H   L   N   P

T1 T8...

root[T]
r

A   D   F L   N   P

H

root[T]
s

r



Inserting Keys 

BtreeNonFull tries to insert a key k into 
a node x, which is assumed to be non-
full when the procedure is called
BTreeInsert and the recursion in 
BTreeInsertNonFull guarantee that this 
assumption is true!



Inserting Keys: Pseudo Code
BTreeInsertNonFull(x,k)
01 i ← n[x]
02 if leaf[x] then
03 while i ≥ 1 and k < keyi[x]
04 keyi+1[x] ← keyi[x]
05 i ← i - 1
06 keyi+1[x] ← k
07 n[x] ← n[x] + 1
08 DiskWrite(x)
09 else while i ≥ 1 and k < keyi[x]
10 i ← i - 1
11 i ← i + 1
12 DiskRead ci[x]
13 if n[ci[x]] = 2t – 1 then
14 BTreeSplitChild(x,i,ci[x])
15 if k > keyi[x] then
16 i ← i + 1
17 BTreeInsertNonFull(ci[x],k)

leaf insertion

internal node: 
traversing tree



Insertion: Example

G   M   P   X

A   C   D   E J   K R   S   T   U   VN   O Y   Z

G   M   P   X

A   B   C   D   E J   K R   S   T   U   VN   O Y   Z

G   M   P   T   X

A   B   C   D   E J   K Q   R   SN   O Y   ZU   V

initial tree (t = 3)

B inserted

Q inserted



Insertion: Example (2)

G   M

A   B   C   D   E J   K   L Q   R   SN   O Y   ZU   V

T   X

P

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E   F

L inserted

F inserted



Insertion: Running Time

Disk I/O: O(h), since only O(1) disk 
accesses are performed during recursive 
calls of BTreeInsertNonFull
CPU: O(th) = O(t logtn)
At any given time there are O(1) number 
of disk pages in main memory



Deleting Keys
Done recursively, by starting from the root and 
recursively traversing down the tree to the leaf 
level
Before descending to a lower level in the tree, 
make sure that the node contains ≥ t keys (cf. 
insertion < 2t – 1 keys)
BtreeDelete distinguishes three different 
stages/scenarios for deletion

Case 1: key k found in leaf node
Case 2: key k found in internal node
Case 3: key k suspected in lower level node



Case 1: If the key k is in node x, and x is a leaf, 
delete k from x

Deleting Keys (2)

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E   F

initial tree

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E

F deleted: 
case 1

x



Deleting Keys (3)

C   G   L

A   B J   K Q   R   SN   O Y   ZU   V

T   X

P

D   E

M deleted: 
case 2a

Case 2: If the key k is in node x, and x is not a 
leaf, delete k from x

a) If the child y that precedes k in node x has at least t
keys, then find the predecessor k’ of k in the sub-tree 
rooted at y. Recursively delete k’, and replace k with 
k’ in x.
b) Symmetrically for successor node z

x

y







Deleting Keys (4)

If both y and z have only t –1 keys, merge k with 
the contents of z into y, so that x loses both k
and the pointers to z, and y now contains 2t – 1 
keys. Free z and recursively delete k from y.

C   L

A   B D   E   J   K Q   R   SN   O Y   ZU   V

T   X

PG deleted: 
case 2c

y = y+k + z - k

x - k



Deleting Keys - Distribution

Descending down the tree: if k not found in 
current node x, find the sub-tree ci[x] that has to 
contain k. 
If ci[x] has only t – 1 keys take action to ensure 
that we descent to a node of size at least t. 
We can encounter two cases.

If ci[x] has only t-1 keys, but a sibling with at least t
keys, give ci[x] an extra key by moving a key from x to 
ci[x], moving a key from ci[x]’s immediate left and right 
sibling up into x, and moving the appropriate child from 
the sibling into ci[x] - distribution



Deleting Keys – Distribution(2)

C   L   P   T   X

A   B E   J   K Q   R   SN   O Y   ZU   Vci[x]

x

sibling

delete B

B deleted: E   L   P   T   X

A   C J   K Q   R   SN   O Y   ZU   V

... k’ ...

... k       

A   B

ci[x]

x ... k ...

...       k’

A

ci[x]

B  



Deleting Keys - Merging

If ci[x] and both of ci[x]’s siblings have t – 1 
keys, merge ci with one sibling, which 
involves moving a key from x down into 
the new merged node to become the 
median key for that node

x ... l’ m’ ...

...l k m ...       

A   B

x ... l’ k m’...

... l        m …

A B  

ci[x]



Deleting Keys – Merging (2)

tree shrinks in height

D deleted: 
C   L   P   T   X

A   B E   J   K Q   R   SN   O Y   ZU   V

C   L

A   B D   E   J   K Q   R   SN   O Y   ZU   V

T   X

P

delete D ci[x] sibling



Deletion: Running Time

Most of the keys are in the leaf, thus deletion 
most often occurs there!
In this case deletion happens in one downward 
pass to the leaf level of the tree
Deletion from an internal node might require 
“backing up” (case 2)
Disk I/O: O(h), since only O(1) disk operations 
are produced during recursive calls
CPU: O(th) = O(t logtn)



Two-pass Operations
Simpler, practical versions of algorithms 
use two passes (down and up the tree):

Down – Find the node where deletion or 
insertion should occur
Up – If needed, split, merge, or distribute; 
propagate splits, merges, or distributes up the 
tree

To avoid reading the same nodes twice, 
use a buffer of nodes 
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