
 Insertion in red-black trees

 a-b trees

 What are they?

 Insertion and deletion in a-b trees

Insertion in red-black trees

 Let k be the key being inserted

As in the case of a BST we first search for

k; this gives us the place where we have

to insert k.

We create a new node with key k and

insert it at this place.

The new node is colored red.

Insertion(2)

Since inserted node is colored red, the
black height of the tree remains
unchanged.

However, if the parent of inserted node is
also red then we have a double red
problem.

No problem Double red problem

k k

Insertion: case 1

 Parent of inserted node (a) is red.

 Parent of (a) must be black (b)

 The other child of (b) is black (c).

b

c

k

a

a

c

kb

The 2-4 tree node contains {b,a,k} and is malformed.

The rotation corrects the defect.

Insertion: Case 2

 Parent of inserted node (a) is red.

 Parent of (a) must be black (b)

 The other child of (b) is also red (c).

b

c

k

a

b

c

k

a

k
abc

ka

b

c

Insertion: case 2 (contd)

 The parent of b could also be red. In that case,

the double red problem moves up a level.

 We repeat this process at the next level.

 Eventually, we might color the root red.

 In this case we recolor the root black. This

increases the black depth of every external node

by 1.

 In the 2-4 tree this corresponds to splitting the

root.

Insertion and Deletion: Summary

 In both insertion and deletion we need to

make at most one rotation.

We might have to move up the tree but in

doing so we only recolor nodes.

Time taken is O(log n)

(a,b) Trees

 A multiway search tree.

 Each node has at least a
and at most b children.

 Root can have less than
a children but it has at
least 2 children.

 All leaf nodes are at the
same level.

 Height h of (a,b) tree is
at least logb n and at
most loga n.

3 4 116 8 13 14 17

12

5 10 15

Insertion
 No problem if the node

has empty space

1 4 9 14 20 24 26

25183

13

8

52

29

28

21 723

22

15

Insertion(2)
 Nodes get split if there is

insufficient space.

 The median key is promoted to the
parent node and inserted there

24 26

25

13

29 7

23

22

281 4 9 14 20

183 8

52 15

Insertion(3)

A node is split when it has exactly b keys.

One of these is promoted to the parent

and the remaining are split between two

nodes.

Thus one node gets and the other

keys.

This implies that a-1 >=

Deletion

 If after deleting a key a node becomes empty
then we borrow a key from its sibling.

 Delete 20

1 4 9 11 14 20

24

26

18

3

13

12

108

6

5

2 29 3023

22

15

28

7

Deletion(2)

1 4 9 11 14 20

18

3

13

12

108

6

5

2

22

157

 If sibling has only one key then we merge with it.

 The key in the parent node separating these two
siblings moves down into the merged node.

 Delete 23

24

26 29 3023

28

Deletion(3)

 In an (a,b) tree we will merge a node with

its sibling if the node has a-2 keys and its

sibling has a-1 keys.

Thus the merged node has 2(a-1) keys.

This implies that 2(a-1) <= b-1 which is

equivalent to a-1 <= .

Earlier too we argued that a-1 <=

This implies b >= 2a-1

For a=2, b >= 3

Conclusion

The height of a (a,b) tree is O(log n).

 b >= 2a-1.

For insertion and deletion we take time
proportional to the height.

