
 Insertion in red-black trees

 a-b trees

 What are they?

 Insertion and deletion in a-b trees

Insertion in red-black trees

 Let k be the key being inserted

As in the case of a BST we first search for

k; this gives us the place where we have

to insert k.

We create a new node with key k and

insert it at this place.

The new node is colored red.

Insertion(2)

Since inserted node is colored red, the
black height of the tree remains
unchanged.

However, if the parent of inserted node is
also red then we have a double red
problem.

No problem Double red problem

k k

Insertion: case 1

 Parent of inserted node (a) is red.

 Parent of (a) must be black (b)

 The other child of (b) is black (c).

b

c

k

a

a

c

kb

The 2-4 tree node contains {b,a,k} and is malformed.

The rotation corrects the defect.

Insertion: Case 2

 Parent of inserted node (a) is red.

 Parent of (a) must be black (b)

 The other child of (b) is also red (c).

b

c

k

a

b

c

k

a

k
abc

ka

b

c

Insertion: case 2 (contd)

 The parent of b could also be red. In that case,

the double red problem moves up a level.

 We repeat this process at the next level.

 Eventually, we might color the root red.

 In this case we recolor the root black. This

increases the black depth of every external node

by 1.

 In the 2-4 tree this corresponds to splitting the

root.

Insertion and Deletion: Summary

 In both insertion and deletion we need to

make at most one rotation.

We might have to move up the tree but in

doing so we only recolor nodes.

Time taken is O(log n)

(a,b) Trees

 A multiway search tree.

 Each node has at least a
and at most b children.

 Root can have less than
a children but it has at
least 2 children.

 All leaf nodes are at the
same level.

 Height h of (a,b) tree is
at least logb n and at
most loga n.

3 4 116 8 13 14 17

12

5 10 15

Insertion
 No problem if the node

has empty space

1 4 9 14 20 24 26

25183

13

8

52

29

28

21 723

22

15

Insertion(2)
 Nodes get split if there is

insufficient space.

 The median key is promoted to the
parent node and inserted there

24 26

25

13

29 7

23

22

281 4 9 14 20

183 8

52 15

Insertion(3)

A node is split when it has exactly b keys.

One of these is promoted to the parent

and the remaining are split between two

nodes.

Thus one node gets and the other

keys.

This implies that a-1 >=

Deletion

 If after deleting a key a node becomes empty
then we borrow a key from its sibling.

 Delete 20

1 4 9 11 14 20

24

26

18

3

13

12

108

6

5

2 29 3023

22

15

28

7

Deletion(2)

1 4 9 11 14 20

18

3

13

12

108

6

5

2

22

157

 If sibling has only one key then we merge with it.

 The key in the parent node separating these two
siblings moves down into the merged node.

 Delete 23

24

26 29 3023

28

Deletion(3)

 In an (a,b) tree we will merge a node with

its sibling if the node has a-2 keys and its

sibling has a-1 keys.

Thus the merged node has 2(a-1) keys.

This implies that 2(a-1) <= b-1 which is

equivalent to a-1 <= .

Earlier too we argued that a-1 <=

This implies b >= 2a-1

For a=2, b >= 3

Conclusion

The height of a (a,b) tree is O(log n).

 b >= 2a-1.

For insertion and deletion we take time
proportional to the height.

