
 Insertion in red-black trees

 a-b trees 

 What are they?

 Insertion and deletion in a-b trees



Insertion in red-black trees

 Let k be the key being inserted

As in the case of a BST we first search for 

k; this gives us the place where we have 

to insert k.

We create a new node with key k and 

insert it at this place.

The new node is colored red.



Insertion(2)

Since inserted node is colored red, the 
black height of the tree remains 
unchanged.

However, if the parent of inserted node is 
also red then we have a double red 
problem.
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Insertion: case 1

 Parent of inserted node (a) is red.

 Parent of (a) must be black (b)

 The other child of (b) is black (c).
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The 2-4 tree node contains {b,a,k} and is malformed.

The rotation corrects the defect.



Insertion: Case 2

 Parent of inserted node (a) is red.

 Parent of (a) must be black (b)

 The other child of (b) is also red (c).
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Insertion: case 2 (contd)

 The parent of b could also be red. In that case, 

the double red problem moves up a level.

 We repeat this process at the next level.

 Eventually, we might color the root red. 

 In this case we recolor the root black. This 

increases the black depth of every external node 

by 1.

 In the 2-4 tree this corresponds to splitting the 

root.



Insertion and Deletion: Summary

 In both insertion and deletion we need to 

make at most one rotation. 

We might have to move up the tree but in 

doing so we only recolor nodes. 

Time taken is O(log n)



(a,b) Trees

 A multiway search tree.

 Each node has at least a
and at most b children.

 Root can have less than 
a children but it has at 
least 2 children.

 All leaf nodes are at the 
same level.

 Height h of (a,b) tree is 
at least logb n and at 
most loga n.
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Insertion
 No problem if the node 

has empty space
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Insertion(2)
 Nodes get split if there is 

insufficient space.

 The median key is promoted to the 
parent node and inserted there  
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Insertion(3)

A node is split when it has exactly b keys.

One of these is promoted to the parent 

and the remaining are split between two 

nodes.

Thus one node gets            and the other

keys.

This implies that a-1 >= 



Deletion

 If after deleting a key a node becomes empty 
then we borrow a key from its sibling.

 Delete 20
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Deletion(2)
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 If sibling has only one key then we merge with it.

 The key in the parent node separating these two 
siblings moves down into the merged node.
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Deletion(3)

 In an (a,b) tree we will merge a node with 

its sibling if the node has a-2 keys and its 

sibling has a-1 keys.

Thus the merged node has 2(a-1) keys.

This implies that 2(a-1) <= b-1 which is 

equivalent to a-1 <=             .

Earlier too we argued that a-1 <=          

This implies b >= 2a-1

For a=2,  b >= 3



Conclusion

The height of a (a,b) tree is O(log n).

 b >= 2a-1.

For insertion and deletion we take time 
proportional to the height.


