
 Insertion in red-black trees

 a-b trees 

 What are they?

 Insertion and deletion in a-b trees



Insertion in red-black trees

 Let k be the key being inserted

As in the case of a BST we first search for 

k; this gives us the place where we have 

to insert k.

We create a new node with key k and 

insert it at this place.

The new node is colored red.



Insertion(2)

Since inserted node is colored red, the 
black height of the tree remains 
unchanged.

However, if the parent of inserted node is 
also red then we have a double red 
problem.
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Insertion: case 1

 Parent of inserted node (a) is red.

 Parent of (a) must be black (b)

 The other child of (b) is black (c).
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The 2-4 tree node contains {b,a,k} and is malformed.

The rotation corrects the defect.



Insertion: Case 2

 Parent of inserted node (a) is red.

 Parent of (a) must be black (b)

 The other child of (b) is also red (c).
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Insertion: case 2 (contd)

 The parent of b could also be red. In that case, 

the double red problem moves up a level.

 We repeat this process at the next level.

 Eventually, we might color the root red. 

 In this case we recolor the root black. This 

increases the black depth of every external node 

by 1.

 In the 2-4 tree this corresponds to splitting the 

root.



Insertion and Deletion: Summary

 In both insertion and deletion we need to 

make at most one rotation. 

We might have to move up the tree but in 

doing so we only recolor nodes. 

Time taken is O(log n)



(a,b) Trees

 A multiway search tree.

 Each node has at least a
and at most b children.

 Root can have less than 
a children but it has at 
least 2 children.

 All leaf nodes are at the 
same level.

 Height h of (a,b) tree is 
at least logb n and at 
most loga n.
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Insertion
 No problem if the node 

has empty space
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Insertion(2)
 Nodes get split if there is 

insufficient space.

 The median key is promoted to the 
parent node and inserted there  
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Insertion(3)

A node is split when it has exactly b keys.

One of these is promoted to the parent 

and the remaining are split between two 

nodes.

Thus one node gets            and the other

keys.

This implies that a-1 >= 



Deletion

 If after deleting a key a node becomes empty 
then we borrow a key from its sibling.
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Deletion(2)
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 If sibling has only one key then we merge with it.

 The key in the parent node separating these two 
siblings moves down into the merged node.
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Deletion(3)

 In an (a,b) tree we will merge a node with 

its sibling if the node has a-2 keys and its 

sibling has a-1 keys.

Thus the merged node has 2(a-1) keys.

This implies that 2(a-1) <= b-1 which is 

equivalent to a-1 <=             .

Earlier too we argued that a-1 <=          

This implies b >= 2a-1

For a=2,  b >= 3



Conclusion

The height of a (a,b) tree is O(log n).

 b >= 2a-1.

For insertion and deletion we take time 
proportional to the height.


