
Red-Black Trees

 What are they?

 Their relation to 2-4 trees

 Deletion in red-black trees



Red-Black Trees

 A red black tree is a binary search tree in which 
each node is colored red or black.

 The root is colored black.

 A red node can have only black children.

 If a node of the BST does not have a left and/or 
right child then we add an external node.

 External nodes are not colored. 

 The black depth of an external node is defined 
as the number of black ancestors it has.

 In a red-black tree every external node has the 
same black depth. 



Examples of red-black trees

Black height of 

tree is 2
Black height of 

tree is 2



Trees which are not red-black

Double red Black height not uniform



Height of a red-black tree

 Let h be the black height of a red-black 
tree on n nodes.

 n is smallest when all nodes are black. In 
this case tree is a complete binary tree of 
height h and n=2h -1.

 n is largest when alternate levels of tree 
are red. Then height of tree is 2h and 
n=22h-1.

Hence, log4 n < h < 1+log2 n



Red-black trees to 2-4 trees

 Any red-black tree can be converted into a 2-4 
tree.

 Take a black node and its red children (at most 2) 
and combine them into one node of a 2-4 tree.

 Each node so formed has at least 1 and at most 3 
keys.

 Since black height of all external nodes is same, 
in the resulting 2-4 tree all leaves are at same 
level.



Example

1

19

17

13

11

9

4

7

53

2

4 139

1 32 115 7 17 19



2-4 trees to red-black trees

Any 2-4 tree can be converted into a red-

black tree. 

We replace a node of the 2-4 tree with one 

black node and 0/1/2 red nodes which are 

children of the black node.

The height of the 2-4 tree is the black 

height of the red-black tree created.

Every red node has a black child.



Example

1 4 9 11 14 20

183

13

12

108

652 15

2

20

18

15

13

8

10

95

3

1 64 11

12 14 Black height is same as 

height of 2-4 tree







Deletion: preliminaries

To delete a node we proceed as in a BST.

Thus the node which is deleted is the 
parent of an external node.

Hence it is either a leaf or the parent of a 
leaf.

1 11
19

17

17



Deletion: preliminaries(2)

 Hence we can assume that the node deleted is a 
black leaf. 

 Removing this reduces black depth of an 
external node by 1.

 Hence, in a general step, we consider how to 
reorganize the tree when the black height of 
some subtree goes down from h to h-1.



Deletion: the cases
a a is blacka is red

a

b
a

b

c c

a

b

c

d d

a

b

c c

b is blackb is red

a

b

c

a

b

Both c 

are black

Some c is 

red

a

b

c

d

a

b

c

Both d 

are black

Some d is red

a

b

c

a

b

Some c is 

red

Both c 

are 

black



Deletion: case1.1
 If parent is a red node (a).

 Then it has a child (b) which must be black

 If b has a red child (c)

b

a

c

ac

b

b

a

c

h to h-1

h-1

h-1h-1

h-1

h-1h-1

h to h-1

h-1 h-1 h-1 h-1

a

b c



Deletion: case 1.2

 If parent is a red node (a).

 Then it has a child (b) which must be black

 If b has no red child

b

a

b

a

h to h-1

h-1h-1

h-1

h-1h-1

a

b ab



Deletion: case 2.1.1
 If parent is a black node (a).

 If a has a red child (b)

 Consider right child of b (c) which must be black.

 If (c) has a red child (d).

b

a

c

d

ab

c

d

h to h-1

h-1

h-1 h-1

h h

h-1

h-1h-1

h-1

d

ab

c d a

b c



Deletion: case 2.1.2
 If parent is a black node (a).

 If a has a red child (b)

 Consider right child of b (c) which must be black.

 If (c) has no red child.

b

a

c

a

b

ch to h-1

h-1h-1

h

h

h-1 h-1

h-1

c

ab

a

b

c



Deletion: case 2.2.1

 If parent is a black node (a).

 If the child of node a (c) is black.

 If (c) has a red child (d)

a

c

d

c

d

ah to h-1

h-1

h-1

h-1

h-1h-1 h-1h-1

c

a

d c a

d



Deletion: case 2.2.2
 If parent is a black node (a).

 If the child of node a (c) is black.

 If (c) has no red child.

a

c

a

c
h to h-1

h-1h-1

h-1

h-1h-1

c

a
ac



Deletion: Summary

 In all cases, except 2.2.2, deletion can be 
completed by a simple rotation/recoloring

 In case 2.2.2, the height of the subtree 
reduces and so we need to proceed up the 
tree.

But in case 2.2.2 we only recolor nodes. 

Thus, if we proceed up the tree then we 
only need to recolor. Eventually we would 
do a rotation.


