
(2,4) Trees

 What are they?

 They are search Trees (but not binary search 

trees)

 They are also known as 2-4, 2-3-4 trees



Multi-way Search Trees

 Each internal node of a multi-way search tree T:

 has at least two children

 stores a collection of items of the form (k, x), where k 

is a key and x is an element

 contains d - 1 items, where d is the number of children

 Has pointers to d children

 Children of each internal node are “between” 

items

 all keys in the subtree rooted at the child fall 

between keys of those items.



Multi-way Searching

 Similar to binary searching
 If search key s<k1 search 

the leftmost child

 If s>kd-1 ,  search the 
rightmost child

 That’s it in a binary tree; 
what about if d>2?
 Find two keys ki-1 and ki

between which s falls, and 
search the child vi.

 What would an in-order 
traversal look like?
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(2,4) Trees

 Properties:

 At most 4 children

 All leaf nodes are at 

the same level.

 Height h of (2,4) tree 

is at least log4 n and 

atmost log2 n

 How is the last fact 

useful in searching?
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Insertion
 No problem if the node 

has empty space
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Insertion(2)

 Nodes get split if there is 
insufficient space. 
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Insertion(3)
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 One key is promoted to 

parent and inserted in there 



Insertion(4)
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 If parent node does not have sufficient space 
then it is split.

 In this manner splits can cascade.



Insertion(5)
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 Eventually we may have to create a new root.

 This increases the height of the tree



Time for Search and  Insertion

 A search visits  O(log N) nodes

 An insertion requires O(log N) node splits

 Each node split takes constant time

 Hence, operations Search and Insert each take time 
O(log N)



Deletion

 Delete 21.

 No problem if key to be deleted is in a leaf with at least 2 
keys
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Deletion(2)

 If key to be deleted is in an internal node then 
we swap it with its predecessor (which is in a 
leaf) and then delete it.
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Deletion(3)

 If after deleting a key a node becomes empty 
then we borrow a key from its sibling.
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Deletion(4)

 If sibling has only one key then we merge with it.

 The key in the parent node separating these two 
siblings moves down into the merged node.
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Delete(5)

 Moving a key down from the parent corresponds 

to deletion in the parent node.

 The procedure is the same as for a leaf node.

 Can lead to a cascade .
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(2,4) Conclusion

The height of a (2,4) tree is O(log n).

Split, transfer, and merge each take O(1).

Search, insertion and deletion each take 
O(log n) .

Why are we doing this?

 (2,4) trees are fun! Why else would we do it?

Well, there’s another reason, too.

They’re pretty fundamental to the idea of 
Red-Black trees as well.


