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(2,4) Trees

What are they?

They are search Trees (but not binary search
trees)

They are also known as 2-4, 2-3-4 trees
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Multi-way Search Trees

Each internal node of a multi-way search tree T:
has at least two children

stores a collection of items of the form (k, x), where k
IS a key and x Is an element

contains d - 1 items, where d is the number of children
Has pointers to d children

Children of each internal node are “between’
items

all keys in the subtree rooted at the child fall
between keys of those items.
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Multi-way Searching

Similar to binary searching

If search key s<k, search |
the leftmost child S
If s>k,., , search the Searching

rightmost child G
That's it in a binary tree; b ( \

what about if d>27? @ @
Find two keys k; ; and k;
between which s falls, and Cl1 13> 17 18 19 20 2]

% Not found!

1 Vd

search the child v;.

What would an in
traversal look like!:
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(2,4) Trees

Properties:
At most 4 children

All leaf nodes are at
the same level.

Height h of (2,4) tree
IS at least log, n and
atmost log, n
How is the last fact
useful in searching?




Insertion
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No problem if the node
has empty space
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Insertion(2)
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Nodes get split if there Is
Insufficient space.
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Insertion(3)

& One key Is promoted to
parent and inserted in there
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Insertion(4)

If parent node does not have sufficient space
then it is split.

In this manner splits can cascade.
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Insertion(5)

Eventually we may have to create a new root.
This increases the height of the tree
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Time for Search and Insertion

A search visits O(log N) nodes
An insertion requires O(log N) node splits
Each node split takes constant time

Hence, operations Search and Insert each take time
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Deletion

Delete 21.

No problem if key to be deleted is in a leaf with at least 2
keys
®
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Deletion(2)

If key to be deleted is in an internal node then
we swap It with its predecessor (which is in a
leaf) and then delete it.

Delete 25
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Deletion(3)

If after deleting a key a hode becomes empty

then we borrow a key from its sibling.
Delete 20
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Deletion(4)

If sibling has only one key then we merge with it.

The key In the parent node separating these two
siblings moves down into the merged node.

Delete 23 a3
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Delete(5)

Moving a key down from the parent corresponds
to deletion in the parent node.

The procedure is the same as for a leaf node.
Can lead to a cascade . %
Delete 18 S
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(2,4) Conclusion

The height of a (2,4) tree i1s O(log n).
Split, transfer, and merge each take O(1).

Search, insertion and deletion each take
O(log n) .
Why are we doing this?
(2,4) trees are fun! Why else would we do it?
Well, there’'s another reason, too.

They're pretty fundamental to the idea of
Red-Black trees as well.




