(2,4) Trees

- What are they?
 - They are search Trees (but not binary search trees)
 - □ They are also known as 2-4, 2-3-4 trees

Multi-way Search Trees

Each internal node of a multi-way search tree T:

- has at least two children
- stores a collection of items of the form (k, x), where k is a key and x is an element
- contains d 1 items, where d is the number of children
- Has pointers to d children
- Children of each internal node are "between" items
- all keys in the subtree rooted at the child fall between keys of those items.

Multi-way Searching

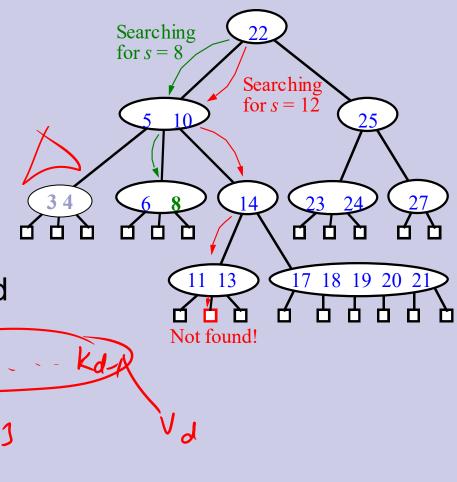
 Similar to binary searching
If search key s<k₁ search the leftmost child

If s>k_{d-1}, search the rightmost child

That's it in a binary tree; what about if d>2?

> Find two keys k_{i-1} and k_i between which s falls, and search the child v_i.

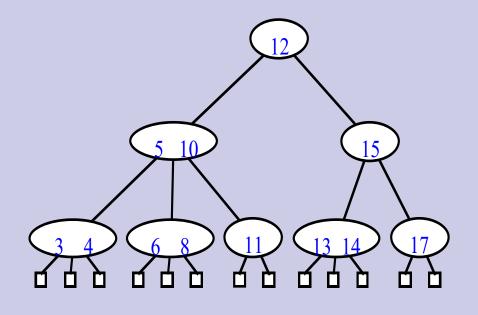
What would an in order traversal look like?



(2,4) Trees

Properties:

- At most 4 children
- All leaf nodes are at the same level.
- Height h of (2,4) tree is at least log₄ n and atmost log₂ n
- How is the last fact useful in searching?



Insertion

 $\underline{40}$

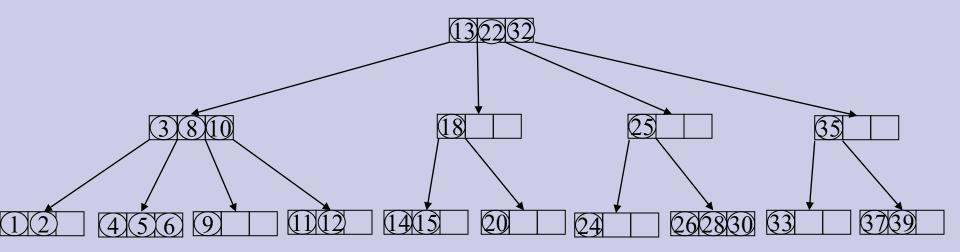
(2)

23

(7)

29

No problem if the node has empty space

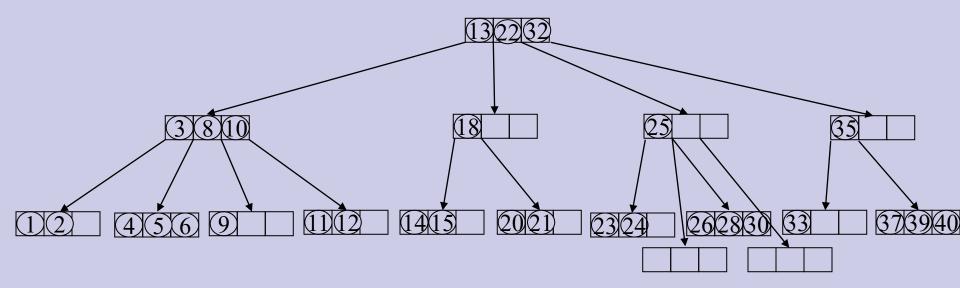


Insertion(2)

 \bigcirc

29

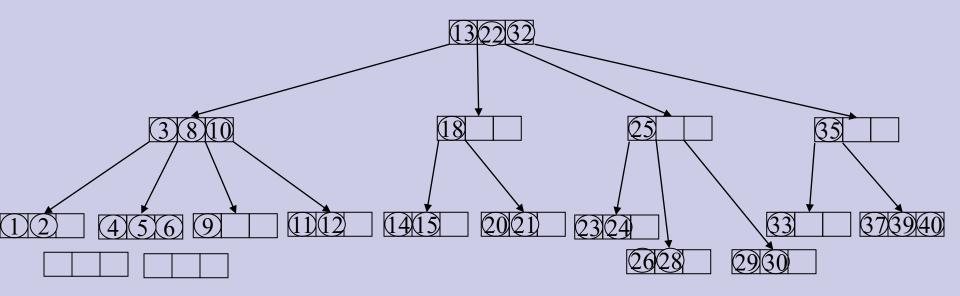
Nodes get split if there is insufficient space.



Insertion(3)

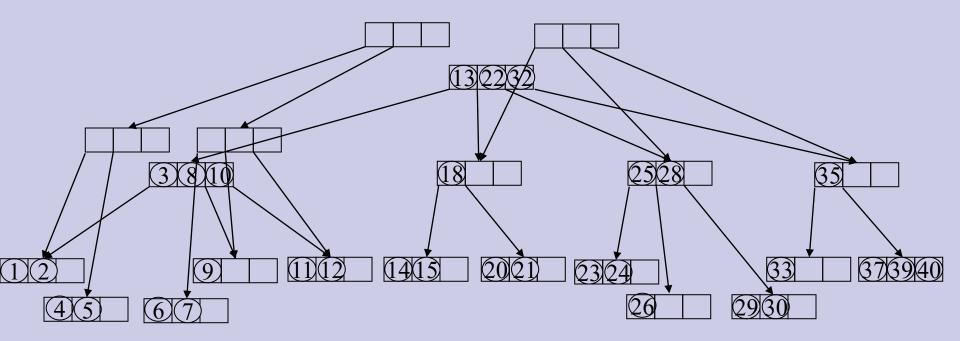
(7)

One key is promoted to parent and inserted in there



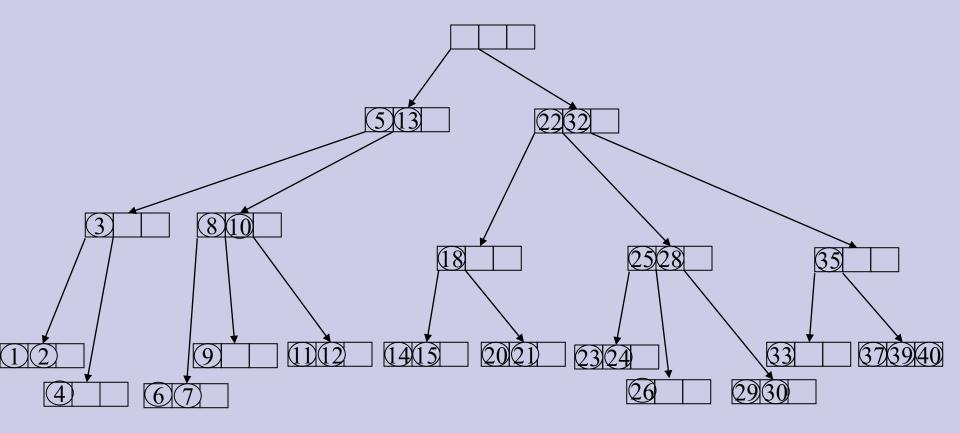
Insertion(4)

- If parent node does not have sufficient space then it is split.
- In this manner splits can cascade.



Insertion(5)

Eventually we may have to create a new root.This increases the height of the tree



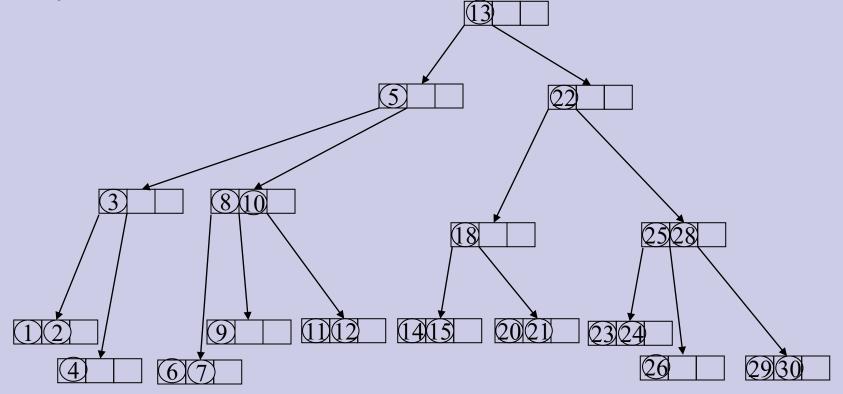
Time for Search and Insertion

- □ A search visits O(log N) nodes
- An insertion requires O(log N) node splits
- Each node split takes constant time
- Hence, operations Search and Insert each take time O(log N)

Deletion

Delete 21.

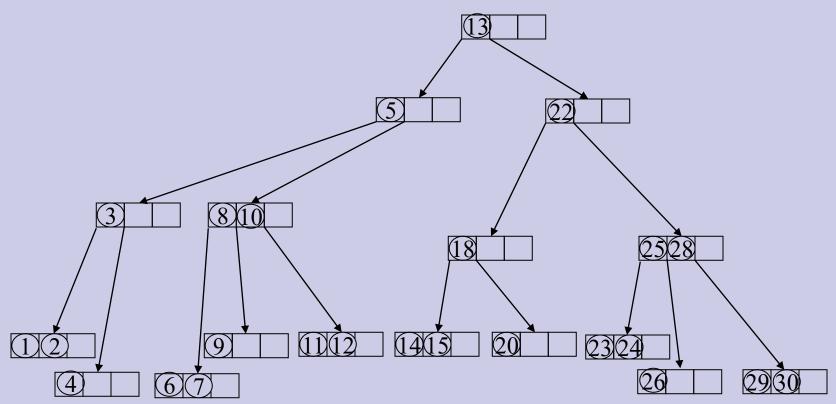
No problem if key to be deleted is in a leaf with at least 2 keys



Deletion(2)

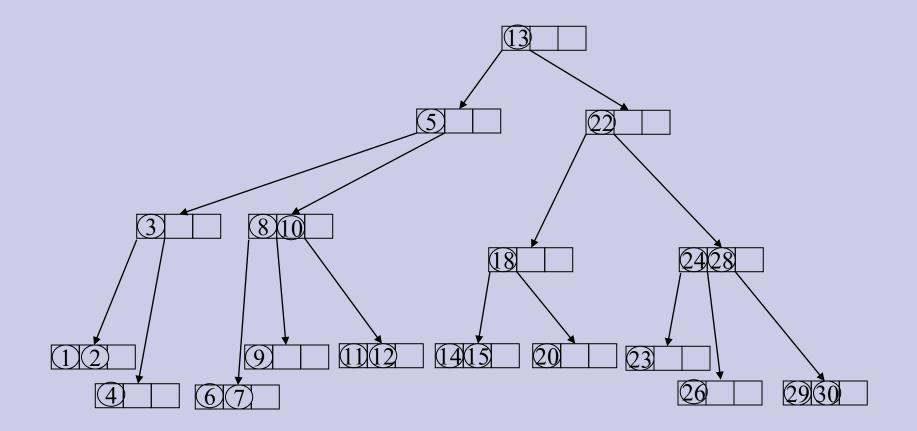
If key to be deleted is in an internal node then we swap it with its predecessor (which is in a leaf) and then delete it.

Delete 25



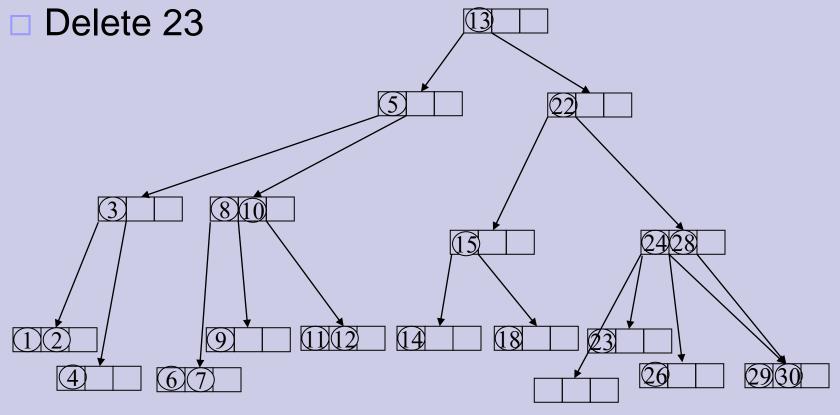
Deletion(3)

 If after deleting a key a node becomes empty then we borrow a key from its sibling.
Delete 20



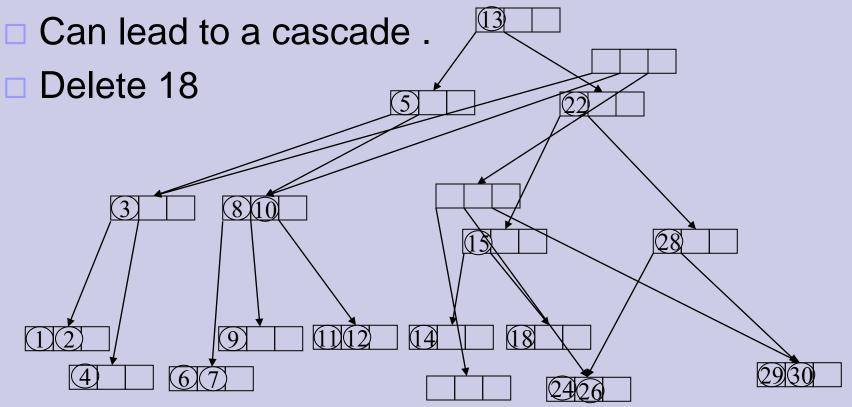
Deletion(4)

If sibling has only one key then we merge with it.
The key in the parent node separating these two siblings moves down into the merged node.



Delete(5)

- Moving a key down from the parent corresponds to deletion in the parent node.
- The procedure is the same as for a leaf node.



(2,4) Conclusion

- The height of a (2,4) tree is $O(\log n)$.
- \Box Split, transfer, and merge each take O(1).
- Search, insertion and deletion each take $O(\log n)$.
- Why are we doing this?
 - \Box (2,4) trees are fun! Why else would we do it?
 - □ Well, there's another reason, too.
 - They're pretty fundamental to the idea of Red-Black trees as well.