
(2,4) Trees

 What are they?

 They are search Trees (but not binary search

trees)

 They are also known as 2-4, 2-3-4 trees

Multi-way Search Trees

 Each internal node of a multi-way search tree T:

 has at least two children

 stores a collection of items of the form (k, x), where k

is a key and x is an element

 contains d - 1 items, where d is the number of children

 Has pointers to d children

 Children of each internal node are “between”

items

 all keys in the subtree rooted at the child fall

between keys of those items.

Multi-way Searching

 Similar to binary searching
 If search key s<k1 search

the leftmost child

 If s>kd-1 , search the
rightmost child

 That’s it in a binary tree;
what about if d>2?
 Find two keys ki-1 and ki

between which s falls, and
search the child vi.

 What would an in-order
traversal look like?

3 4 6 8 23 24 27

22

5 10 25

11 13

14

Searching
for s = 8

Searching
for s = 12

Not found!

17 18 19 20 21

3 4

(2,4) Trees

 Properties:

 At most 4 children

 All leaf nodes are at

the same level.

 Height h of (2,4) tree

is at least log4 n and

atmost log2 n

 How is the last fact

useful in searching?

3 4 116 8 13 14 17

12

5 10 15

Insertion
 No problem if the node

has empty space

1 4 9 11 14 20 24 26 33 37

3525183

13 32

12

108

652

2940

393028

21 723

22

15

Insertion(2)

 Nodes get split if there is
insufficient space.

1 4 9 11 14 20 24 26 33 37

3525183

13 32

12

108

652

29

40393021

7

23

22

15 28

Insertion(3)

1 4 9 11 14 20 24

26

33 37

3525183

13 32

12

108

652

29

4039

30

21

7

23

22

15

28

 One key is promoted to

parent and inserted in there

Insertion(4)

1

4

9 11 14 20 24

26

33

3525183

13 32

12

108

65

2

29 30

21 23

22

15

28

7

37 4039

 If parent node does not have sufficient space
then it is split.

 In this manner splits can cascade.

Insertion(5)

1

4

9 11 14 20 24

26

33

352518

3

13 32

12

108

6

5

2

29 30

21 23

22

15

28

7

37 4039

 Eventually we may have to create a new root.

 This increases the height of the tree

Time for Search and Insertion

 A search visits O(log N) nodes

 An insertion requires O(log N) node splits

 Each node split takes constant time

 Hence, operations Search and Insert each take time
O(log N)

Deletion

 Delete 21.

 No problem if key to be deleted is in a leaf with at least 2
keys

1

4

9 11 14 20 24

26

2518

3

13

12

108

6

5

2

29 30

21 23

22

15

28

7

Deletion(2)

 If key to be deleted is in an internal node then
we swap it with its predecessor (which is in a
leaf) and then delete it.

 Delete 25

1

4

9 11 14 20 24

26

2518

3

13

12

108

6

5

2

29 30

23

22

15

28

7

Deletion(3)

 If after deleting a key a node becomes empty
then we borrow a key from its sibling.

 Delete 20

1

4

9 11 14 20

24

26

18

3

13

12

108

6

5

2

29 30

23

22

15

28

7

Deletion(4)

 If sibling has only one key then we merge with it.

 The key in the parent node separating these two
siblings moves down into the merged node.

 Delete 23

1

4

9 11 14

24

26

18

3

13

12

108

6

5

2

29 30

23

22

15 28

7

Delete(5)

 Moving a key down from the parent corresponds

to deletion in the parent node.

 The procedure is the same as for a leaf node.

 Can lead to a cascade .

 Delete 18

1

4

9 11 14

24 26

18

3

13

12

108

6

5

2

29 30

22

15 28

7

(2,4) Conclusion

The height of a (2,4) tree is O(log n).

Split, transfer, and merge each take O(1).

Search, insertion and deletion each take
O(log n) .

Why are we doing this?

 (2,4) trees are fun! Why else would we do it?

Well, there’s another reason, too.

They’re pretty fundamental to the idea of
Red-Black trees as well.

