" S
(2,4) Trees

What are they?

They are search Trees (but not binary search
trees)

They are also known as 2-4, 2-3-4 trees

" S
Multi-way Search Trees

Each internal node of a multi-way search tree T:
has at least two children

stores a collection of items of the form (k, x), where k
IS a key and x Is an element

contains d - 1 items, where d is the number of children
Has pointers to d children

Children of each internal node are “between’
items

all keys in the subtree rooted at the child fall
between keys of those items.

" S
Multi-way Searching

Similar to binary searching

If search key s<k, search |
the leftmost child S
If s>k,., , search the Searching

rightmost child G
That's it in a binary tree; b (\

what about if d>27? @ @
Find two keys k; ; and k;
between which s falls, and Cl1 13> 17 18 19 20 2]

% Not found!

1 Vd

search the child v;.

What would an in
traversal look like!:

"
(2,4) Trees

Properties:
At most 4 children

All leaf nodes are at
the same level.

Height h of (2,4) tree
IS at least log, n and
atmost log, n
How is the last fact
useful in searching?

Insertion

) @ @w 9 D

(3X8J10

No problem if the node
has empty space

2) | (4

(516

(9)

15

Q6

-7

N/

N

os)
NO/

Insertion(2)

(1

Q2

9 @

(3X8)

(4)

(516)

Nodes get split if there Is
Insufficient space.

Q3

(9)

(1D

15

RORY |[23124

28

N/

N

Ne

40

25

=
Insertion(3)

& One key Is promoted to
parent and inserted in there

&/
[~
o/
&

o)
Y

(3X8X1

OORIN66IO (D42 (@43l 1 kool 1@

N
O
ey,
o)
N
oS
NS
os)
NO/

£
&
O
NO/
G
o/

" S
Insertion(4)

If parent node does not have sufficient space
then it is split.

In this manner splits can cascade.

13122032
(3X8X10 (18 25028 j@\
0P © ADa2 443 | Roen |B3ied 33 3739140)

NO/
QI
=/

4xs) | 6@ 6 2

- S
Insertion(5)

Eventually we may have to create a new root.
This increases the height of the tree

(5

N/
Q)
D/
N/

(3) (8110

(] (9 ADa2 443 | Roen B34 33 3739140)

NO/
Q9
=/

@ 6X7] 26 2

" I
Time for Search and Insertion

A search visits O(log N) nodes
An insertion requires O(log N) node splits
Each node split takes constant time

Hence, operations Search and Insert each take time

" I
Deletion

Delete 21.

No problem if key to be deleted is in a leaf with at least 2
keys
®

(5) Q2

(3) (8110

(12 O ADA2 403 | Roel |

S
Q)
SV

G0

Ne

(4 (6X7) Q6 2

"
Deletion(2)

If key to be deleted is in an internal node then
we swap It with its predecessor (which is in a
leaf) and then delete it.

Delete 25

\

)

(8)

(1

Q2)

4

(5)

(9)

12

15

@

N/

NO/

G0)

" S
Deletion(3)

If after deleting a key a hode becomes empty

then we borrow a key from its sibling.
Delete 20

(3)

(8)

(L

Q)

(4)

13

(5)

(9)

12

y
@

N

N/

G0

" B
Deletion(4)

If sibling has only one key then we merge with it.

The key In the parent node separating these two
siblings moves down into the merged node.

Delete 23 a3

(5) Q2

(3) (8X10

0
N/

(2] J@ 1042 |49 (
@ &7 06 ®

NO/
=/

= S
Delete(5)

Moving a key down from the parent corresponds
to deletion in the parent node.

The procedure is the same as for a leaf node.
Can lead to a cascade . %
Delete 18 S

(3) (8X10

Q8)

o/
/]

(L) © Qa2 ja4 \l 1 d

J' \
@' @0 o 29150

" S
(2,4) Conclusion

The height of a (2,4) tree i1s O(log n).
Split, transfer, and merge each take O(1).

Search, insertion and deletion each take
O(log n) .
Why are we doing this?
(2,4) trees are fun! Why else would we do it?
Well, there’'s another reason, too.

They're pretty fundamental to the idea of
Red-Black trees as well.

