
(2,4) Trees

 What are they?

 They are search Trees (but not binary search 

trees)

 They are also known as 2-4, 2-3-4 trees



Multi-way Search Trees

 Each internal node of a multi-way search tree T:

 has at least two children

 stores a collection of items of the form (k, x), where k 

is a key and x is an element

 contains d - 1 items, where d is the number of children

 Has pointers to d children

 Children of each internal node are “between” 

items

 all keys in the subtree rooted at the child fall 

between keys of those items.



Multi-way Searching

 Similar to binary searching
 If search key s<k1 search 

the leftmost child

 If s>kd-1 ,  search the 
rightmost child

 That’s it in a binary tree; 
what about if d>2?
 Find two keys ki-1 and ki

between which s falls, and 
search the child vi.

 What would an in-order 
traversal look like?

3 4 6 8 23 24 27

22

5 10 25

11 13

14

Searching
for s = 8

Searching
for s = 12

Not found!

17 18 19 20 21

3 4



(2,4) Trees

 Properties:

 At most 4 children

 All leaf nodes are at 

the same level.

 Height h of (2,4) tree 

is at least log4 n and 

atmost log2 n

 How is the last fact 

useful in searching?

3 4 116 8 13 14 17

12

5 10 15



Insertion
 No problem if the node 

has empty space

1 4 9 11 14 20 24 26 33 37

3525183

13 32

12

108

652

2940

393028

21 723

22

15



Insertion(2)

 Nodes get split if there is 
insufficient space. 

1 4 9 11 14 20 24 26 33 37

3525183

13 32

12

108

652

29

40393021

7

23

22

15 28



Insertion(3)

1 4 9 11 14 20 24

26

33 37

3525183

13 32

12

108

652

29

4039

30

21

7

23

22

15

28

 One key is promoted to 

parent and inserted in there 



Insertion(4)

1

4

9 11 14 20 24

26

33

3525183

13 32

12

108

65

2

29 30

21 23

22

15

28

7

37 4039

 If parent node does not have sufficient space 
then it is split.

 In this manner splits can cascade.



Insertion(5)

1

4

9 11 14 20 24

26

33

352518

3

13 32

12

108

6

5

2

29 30

21 23

22

15

28

7

37 4039

 Eventually we may have to create a new root.

 This increases the height of the tree



Time for Search and  Insertion

 A search visits  O(log N) nodes

 An insertion requires O(log N) node splits

 Each node split takes constant time

 Hence, operations Search and Insert each take time 
O(log N)



Deletion

 Delete 21.

 No problem if key to be deleted is in a leaf with at least 2 
keys

1

4

9 11 14 20 24

26

2518

3

13

12

108

6

5

2

29 30

21 23

22

15

28

7



Deletion(2)

 If key to be deleted is in an internal node then 
we swap it with its predecessor (which is in a 
leaf) and then delete it.

 Delete 25

1

4

9 11 14 20 24

26

2518

3

13

12

108

6

5

2

29 30

23

22

15

28

7



Deletion(3)

 If after deleting a key a node becomes empty 
then we borrow a key from its sibling.

 Delete 20

1

4

9 11 14 20

24

26

18

3

13

12

108

6

5

2

29 30

23

22

15

28

7



Deletion(4)

 If sibling has only one key then we merge with it.

 The key in the parent node separating these two 
siblings moves down into the merged node.

 Delete 23

1

4

9 11 14

24

26

18

3

13

12

108

6

5

2

29 30

23

22

15 28

7



Delete(5)

 Moving a key down from the parent corresponds 

to deletion in the parent node.

 The procedure is the same as for a leaf node.

 Can lead to a cascade .

 Delete 18

1

4

9 11 14

24 26

18

3

13

12

108

6

5

2

29 30

22

15 28

7



(2,4) Conclusion

The height of a (2,4) tree is O(log n).

Split, transfer, and merge each take O(1).

Search, insertion and deletion each take 
O(log n) .

Why are we doing this?

 (2,4) trees are fun! Why else would we do it?

Well, there’s another reason, too.

They’re pretty fundamental to the idea of 
Red-Black trees as well.


