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Insertion
Inserting a node, v, into an AVL tree changes the 
heights of some of the nodes in T.
The only nodes whose heights can increase are 
the ancestors of node v.
If insertion causes T to become unbalanced, then 
some ancestor of v would have a height-
imbalance.
We travel up the tree from v until we find the first 
node x such that its grandparent z is unbalanced.
Let y be the parent of node x.
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Insertion (2)
To rebalance the subtree rooted at z, we must 
perform a rotation.
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Rotations
Rotation is a way of locally reorganizing a BST.
Let u,v be two nodes such that u=parent(v)
Keys(T1) < key(v) < keys(T2) < key (u) < keys(T3)
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Insertion
Insertion happens in subtree T1.
ht(T1) increases from h to h+1.
Since x remains balanced ht(T2) 
is h or h+1 or h+2.

If ht(T2)=h+2 then x is originally 
unbalanced
If ht(T2)=h+1 then ht(x) does not 
increase.
Hence ht(T2)=h.

So ht(x) increases from h+1 to 
h+2.
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Insertion(2)
Since y remains balanced, 
ht(T3) is h+1 or h+2 or h+3.

If ht(T3)=h+3 then y is originally 
unbalanced.
If ht(T3)=h+2 then ht(y) does not 
increase.
So ht(T3)=h+1.

So ht(y) inc. from h+2 to h+3.
Since z was balanced ht(T4) 
is h+1 or h+2 or h+3.
z is now unbalanced and so 
ht(T4)=h+1.
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Single rotation

The height of the subtree remains the same after 
rotation. Hence no further rotations required
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Double rotation

Final tree has same height 
as original tree. Hence we 
need not go further up the 
tree.

z

x

y

T3T2

T1

T4

h to h+1 h

h+1 to h+2h+1

h+2 to h+3 h+1

h+3

z

x

y T3

T2T1

T4

h+1

hh+2

h+1

h+3 h+1

h+4

z

x

y

T3T2T1 T4
h+1 h

h+2

h+1

h+3

h+1

h+2

rotation(x,y)

rotation(x,z)



9

Restructuring
The four ways to rotate nodes in an AVL tree, graphically 
represented
-Single Rotations:
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Restructuring (contd.)
double rotations:
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Deletion

When deleting a node in a BST, we either 
delete a leaf or a node with only one child.
In an AVL tree if a node has only one child 
then that child is a leaf. 
Hence in an AVL tree we either delete a 
leaf or the parent of a leaf.
Hence deletion can be assumed to be at a 
leaf.
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Deletion(2)
Let w be the node deleted.
Let z be the first unbalanced node encountered 
while travelling up the tree from w. Also, let y be the 
child of z with larger height, and let x be the child of 
y with larger height.
We perform rotations to restore balance at the 
subtree rooted at z.
As this restructuring may upset the balance of 
another node higher in the tree, we must continue 
checking for balance until the root of T is reached
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Deletion(3) Suppose deletion 
happens in subtree T4
and its ht. reduces from 
h to h-1.
Since z was balanced 
but is now unbalanced, 
ht(y) = h+1.
x has larger ht. than T3
and so ht(x)=h.
Since y is balanced 
ht(T3)= h or h-1
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Deletion(4)

Since ht(x)=h, and x is 
balanced  ht(T1), ht(T2) 
is h-1 or h-2.
However, both T1 and 
T2 cannot have ht. h-2
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Single rotation (deletion)

After rotation height of subtree might be 1 less than 
original height. In that case we continue up the tree
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Deletion: another case

As before we can claim 
that ht(y)=h+1 and 
ht(x)=h.
Since y is balanced 
ht(T1) is h or h-1.
If ht(T1) is h then we 
would have picked x as 
the root of T1.
So ht(T1)=h-1
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Double rotation

Final tree has height less 
than original tree. Hence we 
need to continue up the tree
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Running time of insertion & deletion

Insertion 
We perform rotation only once but might have to 
go O(log n) levels to find the unbalanced node.
So time for insertion is O(log n)

Deletion
We need O(log n) time to delete a node.
Rebalancing also requires O(log n) time. 
More than one rotation may have to be 
performed.
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