
1

AVL Trees
AVL Trees

2

Insertion
Inserting a node, v, into an AVL tree changes the
heights of some of the nodes in T.
The only nodes whose heights can increase are
the ancestors of node v.
If insertion causes T to become unbalanced, then
some ancestor of v would have a height-
imbalance.
We travel up the tree from v until we find the first
node x such that its grandparent z is unbalanced.
Let y be the parent of node x.

3

Insertion (2)
To rebalance the subtree rooted at z, we must
perform a rotation.

44

17

32

78

50

48 62

88

54

z

x

y

44

17

32

62

50

48 54

78

88

z

x

y

4

Rotations
Rotation is a way of locally reorganizing a BST.
Let u,v be two nodes such that u=parent(v)
Keys(T1) < key(v) < keys(T2) < key (u) < keys(T3)

u

v

T1 T2

T3

5

Insertion
Insertion happens in subtree T1.
ht(T1) increases from h to h+1.
Since x remains balanced ht(T2)
is h or h+1 or h+2.

If ht(T2)=h+2 then x is originally
unbalanced
If ht(T2)=h+1 then ht(x) does not
increase.
Hence ht(T2)=h.

So ht(x) increases from h+1 to
h+2.

z

x

y

T2T1

T3

T4

h to h+1 h

h+1 to h+2

6

Insertion(2)
Since y remains balanced,
ht(T3) is h+1 or h+2 or h+3.

If ht(T3)=h+3 then y is originally
unbalanced.
If ht(T3)=h+2 then ht(y) does not
increase.
So ht(T3)=h+1.

So ht(y) inc. from h+2 to h+3.
Since z was balanced ht(T4)
is h+1 or h+2 or h+3.
z is now unbalanced and so
ht(T4)=h+1.

z

x

y

T2T1

T3

T4

h to h+1 h

h+1 to h+2

h+1

h+2 to h+3

h+1

h+3

7

Single rotation

The height of the subtree remains the same after
rotation. Hence no further rotations required

z

x

y

T2T1

T3

T4

h to h+1 h

h+1 to h+2

h+1

h+2 to h+3 h+1

zx

y

T2T1 T3 T4
h+1 h

h+2

h+1

h+3

h+1

h+3

h+2

rotation(y,z)

8

Double rotation

Final tree has same height
as original tree. Hence we
need not go further up the
tree.

z

x

y

T3T2

T1

T4

h to h+1 h

h+1 to h+2h+1

h+2 to h+3 h+1

h+3

z

x

y T3

T2T1

T4

h+1

hh+2

h+1

h+3 h+1

h+4

z

x

y

T3T2T1 T4
h+1 h

h+2

h+1

h+3

h+1

h+2

rotation(x,y)

rotation(x,z)

9

Restructuring
The four ways to rotate nodes in an AVL tree, graphically
represented
-Single Rotations:

10

Restructuring (contd.)
double rotations:

11

Deletion

When deleting a node in a BST, we either
delete a leaf or a node with only one child.
In an AVL tree if a node has only one child
then that child is a leaf.
Hence in an AVL tree we either delete a
leaf or the parent of a leaf.
Hence deletion can be assumed to be at a
leaf.

12

Deletion(2)
Let w be the node deleted.
Let z be the first unbalanced node encountered
while travelling up the tree from w. Also, let y be the
child of z with larger height, and let x be the child of
y with larger height.
We perform rotations to restore balance at the
subtree rooted at z.
As this restructuring may upset the balance of
another node higher in the tree, we must continue
checking for balance until the root of T is reached

13

Deletion(3) Suppose deletion
happens in subtree T4
and its ht. reduces from
h to h-1.
Since z was balanced
but is now unbalanced,
ht(y) = h+1.
x has larger ht. than T3
and so ht(x)=h.
Since y is balanced
ht(T3)= h or h-1

z

x

y

T2T1

T3

T4

h-1 or h-2

h-1 or h-2

h h or h-1

h+1 h to h-1

h+2

14

Deletion(4)

Since ht(x)=h, and x is
balanced ht(T1), ht(T2)
is h-1 or h-2.
However, both T1 and
T2 cannot have ht. h-2

z

x

y

T2T1

T3

T4

h-1 or h-2 h-1 or h-2

h h or h-1

h+1 h to h-1

h+2

15

Single rotation (deletion)

After rotation height of subtree might be 1 less than
original height. In that case we continue up the tree

z

x

y

T2T1

T3

T4

h-1 or h-2

h-1 or h-2

h h or h-1

h+1 h to h-1

h+2

zx

y

T2T1 T3 T4
h-1 or h-2 h-1 or h-2

h

h or h-1

h+1 or h+2

h-1

h or h+1

rotation(y,z)

16

Deletion: another case

As before we can claim
that ht(y)=h+1 and
ht(x)=h.
Since y is balanced
ht(T1) is h or h-1.
If ht(T1) is h then we
would have picked x as
the root of T1.
So ht(T1)=h-1

z

x

y

T3T2

T1

T4

h-1 or h-2 h-1 or h-2

h

h-1

h+1 h to h-1

h+2

17

Double rotation

Final tree has height less
than original tree. Hence we
need to continue up the tree

z

x

y

T3T2

T1

T4

h-1 or h-2 h-1 or h-2

h

h-1

h+1 h to h-1

h+2

z

x

y T3

T2T1

T4

h-1 or h-2

h-1 or h-2h

h-1

h+1 h-1

h+2

z

x

y

T3T2T1 T4

h

h+1

h-1

h

rotation(x,y)

rotation(x,z)

h-1 h-1 or h-2 h-1 or h-2

18

Running time of insertion & deletion

Insertion
We perform rotation only once but might have to
go O(log n) levels to find the unbalanced node.
So time for insertion is O(log n)

Deletion
We need O(log n) time to delete a node.
Rebalancing also requires O(log n) time.
More than one rotation may have to be
performed.

	AVL Trees
	Insertion
	Insertion (2)
	Rotations
	Insertion
	Insertion(2)
	Single rotation
	Double rotation
	Restructuring
	Restructuring (contd.)
	Deletion
	Deletion(2)
	Deletion(3)
	Deletion(4)
	Single rotation (deletion)
	Deletion: another case
	Double rotation
	Running time of insertion & deletion

