
Data Structures and Algorithms

�Algorithm: Outline, the essence of a 
computational procedure, step-by-step 
instructions

�Program: an implementation of an 
algorithm in some programming language 

�Data structure: Organization of data 
needed to solve the problem



Algorithmic problem

� Infinite number of input instances satisfying the 
specification. For eg: A sorted, non-decreasing 
sequence of natural numbers of non-zero, finite 
length:
� 1, 20, 908, 909, 100000, 1000000000.

� 3.

Specification 
of input

?
Specification 
of output as 
a function of 
input



Algorithmic Solution

�Algorithm describes actions on the input instance
� Infinitely many correct algorithms for the same 

algorithmic problem 

Input instance, 
adhering to 
the 
specification

Algorithm Output 
related to 
the input as 
required



What is a Good Algorithm?
�Efficient:
�Running time
�Space used

�Efficiency as a function of input size:
�The number of bits in an input number 
�Number of data elements (numbers, points)



Measuring the Running Time 

Experimental Study
�Write a program that implements the algorithm
�Run the program with data sets of varying size 

and composition.
�Use a method like System.currentTimeMillis() to 

get an accurate measure of the actual running 
time.

How should we measure the 
running time of an algorithm?



Limitations of Experimental Studies

� It is necessary to implement and test the 
algorithm in order to determine its running time. 

�Experiments can be done only on a limited set of 
inputs, and may not be indicative of the running 
time on other inputs not included in the 
experiment. 

� In order to compare two algorithms, the same 
hardware and software environments should be 
used.



Beyond Experimental Studies

We will develop a general methodology for 
analyzing running time of algorithms. This 
approach 
�Uses a high-level description of the algorithm 

instead of testing one of its implementations. 
�Takes into account all possible inputs. 
�Allows one to evaluate the efficiency of any 

algorithm in a way that is independent of the 
hardware and software environment.



Pseudo-Code
� A mixture of natural language and high-level 

programming concepts that describes the main 
ideas behind a generic implementation of a data 
structure or algorithm.

� Eg: Algorithm arrayMax(A, n):
Input: An array A storing n integers.
Output: The maximum element in A.
currentMax ← A[0]
for  i ← 1 to n-1 do

if currentMax < A[i] then currentMax ← A[i]
return currentMax



Pseudo-Code 
It is more structured than usual prose but
less formal than a programming language

�Expressions: 
�use standard mathematical symbols to 

describe numeric and boolean expressions   
�use ← for assignment (“=” in Java)
�use = for the equality relationship (“==” in 

Java)
�Method Declarations:       
�Algorithm name(param1, param2)



Pseudo Code
�Programming Constructs: 
�decision structures: if ... then ... [else ... ] 
�while-loops: while ... do 
�repeat-loops: repeat ... until ...
� for-loop: for ... do
�array indexing: A[i], A[i,j]

�Methods:
�calls: object method(args)
�returns: return value 



Analysis of Algorithms

�Primitive Operation: Low-level operation 
independent of programming language. 
Can be identified in pseudo-code. For eg:
�Data movement (assign)
�Control (branch, subroutine call, return)
�arithmetic an logical operations (e.g. addition, 

comparison)
�By inspecting the pseudo-code, we can 

count the number of primitive operations 
executed by an algorithm.



Sort

Example: Sorting
INPUT
sequence of numbers

a1, a2, a3,….,an
b1,b2,b3,….,bn

OUTPUT
a permutation of the 
sequence of numbers

2    5    4    10    7  2    4 5    7    10  

Correctness (requirements for the  
output)
For any given input the algorithm 
halts with the output:

• b1 < b2 < b3 < …. <  bn
• b1, b2, b3, …., bn is a 
permutation of a1, a2, a3,….,an

Running time
Depends on

• number of elements (n)
• how (partially) sorted
they are

• algorithm



Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start “empty handed”
• Insert a card in the right
position of the already sorted
hand

• Continue until all cards are
inserted/sorted

INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that 
A[1]≤ A[2]≤ …≤A[n]

for j←2 to n do
key ← A[j]
Insert A[j] into the sorted sequence 
A[1..j-1]
i←j-1
while i>0 and A[i]>key

do A[i+1]←A[i]
i--

A[i+1]←key



Analysis of Insertion Sort

for j←2 to n do
key←A[j]
Insert A[j] into the sorted   
sequence A[1..j-1]
i←j-1
while i>0 and A[i]>key
do A[i+1]←A[i]

i--
A[i+1] ← key
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Total time = n(c1+c2+c3+c7) + ∑n
j=2 tj (c4+c5+c6) 

– (c2+c3+c5+c6+c7)



Best/Worst/Average Case

�Best case: elements already sorted; tj=1, 
running time = f(n), i.e., linear time. 

�Worst case: elements are sorted in 
inverse order; tj=j, running time = f(n2), i.e.,
quadratic time

�Average case: tj=j/2, running time = f(n2),
i.e., quadratic time

Total time = n(c1+c2+c3+c7) + ∑n
j=2 tj (c4+c5+c6) 

– (c2+c3+c5+c6+c7)



Best/Worst/Average Case (2)

�For a specific size of input n, investigate 
running times for different input instances:



Best/Worst/Average Case (3)
For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size
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1    2    3    4    5     6    7    8     9   10   11   12  …..

best-case

average-case

worst-case



Best/Worst/Average Case (4)

� Worst case is usually used: It is an upper-
bound and in certain application domains (e.g., 
air traffic control, surgery) knowing the worst-
case time complexity is of crucial importance

� For some algorithms worst case occurs fairly 
often

� Average case is often as bad as the worst 
case

� Finding average case can be very difficult



Asymptotic Analysis
� Goal: to simplify analysis of running time by 

getting rid of ”details”, which may be affected by 
specific implementation and hardware 
� like “rounding”: 1,000,001 ≈ 1,000,000
� 3n2 ≈ n2

� Capturing the essence: how the running time of 
an algorithm increases with the size of the input 
in the limit.
� Asymptotically more efficient algorithms are best for 

all but small inputs 



Asymptotic Notation
�The “big-Oh” O-Notation
�asymptotic upper bound
� f(n) is O(g(n)), if there 

exists constants c and 
n0, s.t. f(n) ≤ c g(n) for n
≥ n0

� f(n) and g(n) are 
functions over non-
negative integers

�Used for worst-case
analysis
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Example
For functions f(n) and g(n) there are positive 
constants c and n0 such that: f(n) ≤ c g(n) for n 
≥ n0

conclusion: 

2n+6 is O(n).



Another Example

On the other hand…
n2 is not O(n) because there 
is no c and n0 such that:  

n2 ≤ cn for n ≥ n0

The graph to the right 
illustrates that no matter 
how large a c is chosen 
there is an n big enough 
that n2 > cn ) .



Asymptotic Notation
�Simple Rule: Drop lower order terms and 

constant factors.
�50 n log n is O(n log n)
�7n - 3 is O(n)
�8n2 log n + 5n2 + n is O(n2 log n)

�Note: Even though (50 n log n) is O(n5), it 
is expected that such an approximation be 
of as small an order as possible



Asymptotic Analysis of Running Time
� Use O-notation to express number of primitive 

operations executed as function of  input size.
� Comparing asymptotic running times
�an algorithm that runs in O(n) time is better 

than one that runs in O(n2) time
�similarly, O(log n) is better than O(n)
�hierarchy of functions:  log n < n < n2 < n3 < 2n

� Caution! Beware of very large constant factors. 
An algorithm running in time 1,000,000 n is still 
O(n) but might be less efficient than one running 
in time 2n2, which is O(n2)



Example of Asymptotic Analysis
Algorithm prefixAverages1(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that 

A[i] is the average of elements X[0], ... , X[i].
for i ← 0 to n-1 do

a ← 0
for j ← 0 to i do

a ← a + X[j] 
A[i] ← a/(i+1)

return array A
Analysis: running time is O(n2)

1 
step

i iterations 
with 
i=0,1,2...n-
1

n iterations



A Better Algorithm
Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such
that A[i] is the average of elements X[0], ... , X[i].
s ← 0
for i ← 0 to n do

s ← s + X[i] 
A[i] ← s/(i+1)

return array A
Analysis: Running time is O(n)



Asymptotic Notation (terminology)

� Special classes of algorithms:
� Logarithmic: O(log n)
� Linear: O(n)
� Quadratic: O(n2)
� Polynomial: O(nk), k ≥ 1
� Exponential: O(an), a > 1

� “Relatives” of the Big-Oh
�Ω (f(n)): Big Omega -asymptotic lower bound
�Θ (f(n)): Big Theta -asymptotic tight bound



� The “big-Omega” Ω−
Notation
� asymptotic lower bound
� f(n) is Ω(g(n)) if there exists 

constants c and n0, s.t.        
c g(n) ≤ f(n) for n ≥ n0

� Used to describe best-
case running times or 
lower bounds for 
algorithmic problems
� E.g., lower-bound for 

searching in an unsorted 
array is Ω(n). 
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� The “big-Theta” Θ−Notation
� asymptotically tight bound
� f(n) = Θ(g(n)) if there exists 

constants c1, c2, and n0, s.t.  
c1 g(n) ≤ f(n) ≤ c2 g(n) for n ≥
n0

� f(n) is Θ(g(n)) if and only if 
f(n) is Ο(g(n))  and f(n) is 
Ω(g(n))

� O(f(n)) is often misused 
instead of Θ(f(n)) 

Asymptotic Notation
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Asymptotic Notation
Two more asymptotic notations
� "Little-Oh" notation f(n) is o(g(n))

non-tight analogue of Big-Oh
�For every c, there should exist n0 , s.t. f(n) 

≤ c g(n) for n ≥ n0

�Used for comparisons of running times. 
If f(n)=o(g(n)), it is said that g(n) 
dominates f(n).

� "Little-omega" notation f(n) is ω(g(n))
non-tight analogue of Big-Omega



Asymptotic Notation
�Analogy with real numbers
� f(n) = O(g(n)) ≅ f ≤ g
� f(n) = Ω(g(n)) ≅ f ≥ g
� f(n) = Θ(g(n)) ≅ f = g
� f(n) = o(g(n)) ≅ f < g
� f(n) = ω(g(n)) ≅ f > g

�Abuse of notation: f(n) = O(g(n)) actually 
means f(n) ∈O(g(n)) 



Comparison of Running Times

Running
Time

Maximum problem size (n)

1 second 1 minute 1 hour

400n 2500 150000 9000000

20n log n 4096 166666 7826087

2n2 707 5477 42426

n4 31 88 244

2n 19 25 31



Correctness of Algorithms
�The algorithm is correct if for any legal 

input it terminates and produces the 
desired output.

�Automatic proof of correctness is not 
possible

�But there are practical techniques and 
rigorous formalisms that help to reason 
about the correctness of algorithms



Partial and Total Correctness

�Partial correctness

Any legal input Algorithm Output

IF this point is reached, THEN this is the desired output

�Total correctness

Any legal input Algorithm Output

INDEED this point is reached, AND this is the desired output



Assertions
� To prove correctness we associate a number of 

assertions (statements about the state of the 
execution) with specific checkpoints in the 
algorithm.
� E.g., A[1], …, A[k] form an increasing sequence

� Preconditions – assertions that must be valid 
before the execution of an algorithm or a 
subroutine

� Postconditions – assertions that must be valid 
after the execution of an algorithm or a 
subroutine 



Loop Invariants
� Invariants – assertions that are valid any 

time they are reached (many times during 
the execution of an algorithm, e.g., in 
loops)

�We must show three things about loop 
invariants:
� Initialization – it is true prior to the first 

iteration
�Maintenance – if it is true before an iteration, 

it remains true before the next iteration
�Termination – when loop terminates the 

invariant gives a useful property to show the 
correctness of the algorithm



Example of Loop Invariants (1)

� Invariant: at the start of 
each for loop, A[1…j-1] 
consists of elements 
originally in A[1…j-1] but 
in sorted order

for j ← 2 to length(A)
do key ← A[j]

i ← j-1
while i>0 and A[i]>key
do A[i+1] ← A[i]

i--
A[i+1] ← key



Example of Loop Invariants (2)

� Invariant: at the start of 
each for loop, A[1…j-1] 
consists of elements 
originally in A[1…j-1] but 
in sorted order

for j ← 2 to length(A)
do key ← A[j]

i ← j-1
while i>0 and A[i]>key
do A[i+1]← A[i]

i--
A[i+1] ← key

� Initialization: j = 2, the invariant trivially holds 
because A[1] is a sorted array ☺



Example of Loop Invariants (3)

� Invariant: at the start of 
each for loop, A[1…j-1] 
consists of elements 
originally in A[1…j-1] but 
in sorted order

for j ← 2 to length(A)
do key ← A[j]

i ← j-1
while i>0 and A[i]>key
do A[i+1] ← A[i]

i--
A[i+1] ← key

� Maintenance: the inner while loop moves elements 
A[j-1], A[j-2], …, A[j-k] one position right without 
changing their order. Then the former A[j] element is 
inserted into k-th position so that A[k-1] ≤ A[k] ≤
A[k+1].

A[1…j-1] sorted + A[j] → A[1…j] sorted 



Example of Loop Invariants (4)

� Invariant: at the start of 
each for loop, A[1…j-1] 
consists of elements 
originally in A[1…j-1] but 
in sorted order

for j ← 2 to length(A)
do key ← A[j]

i ← j-1
while i>0 and A[i]>key
do A[i+1] ← A[i]

i--
A[i+1] ← key

� Termination: the loop terminates, when j=n+1. Then 
the invariant states: “A[1…n] consists of elements 
originally in A[1…n] but in sorted order” ☺



Math You Need to Review

� Properties of logarithms:
logb(xy)  = logbx + logby
logb(x/y) = logbx - logby
logb xa = a logb x
logb a     = logxa/logxb

� Properties of exponentials:
a(b+c) = abac ;  abc = (ab)c

ab /ac = a(b-c) ; b = aloga b

� Floor: ⎣x⎦ = the largest integer  ≤ x
� Ceiling: ⎡x⎤ = the smallest integer ≥ x



Math Review 

�Geometric progression
�given an integer n0 and a real number 0< a ≠ 1

�geometric progressions exhibit exponential 
growth

�Arithmetic progression
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Summations
�The running time of insertion sort is 

determined by a nested loop

�Nested loops correspond to summations

for j←2 to length(A)
key←A[j]
i←j-1
while i>0 and A[i]>key

A[i+1]←A[i]
i←i-1

A[i+1]←key
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Proof by Induction
�We want to show that property P is true for 

all integers n ≥ n0 

�Basis: prove that P is true for n0

� Inductive step: prove that if P is true for 
all k such that n0 ≤ k ≤ n – 1 then P is also 
true for n

�Example

�Basis

0

( 1)( )  for 1
2

n

i

n nS n i n
=

+
= = ≥∑

1

0

1(1 1)(1)
2i

S i
=

+
= =∑



Proof by Induction (2)

0

1

0 0
2

( 1)( )  for 1 k 1
2

( ) ( 1)

( 1 1) ( 2 )( 1)
2 2

( 1)
2

k

i

n n

i i

k kS k i n

S n i i n S n n

n n n nn n

n n

=

−

= =

+
= = ≤ ≤ −

= = + = − + =

− + − +
= − + = =

+
=

∑

∑ ∑

� Inductive Step
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