
Data Structures and Algorithms

�Algorithm: Outline, the essence of a
computational procedure, step-by-step
instructions

�Program: an implementation of an
algorithm in some programming language

�Data structure: Organization of data
needed to solve the problem

Algorithmic problem

� Infinite number of input instances satisfying the
specification. For eg: A sorted, non-decreasing
sequence of natural numbers of non-zero, finite
length:
� 1, 20, 908, 909, 100000, 1000000000.

� 3.

Specification
of input

?
Specification
of output as
a function of
input

Algorithmic Solution

�Algorithm describes actions on the input instance
� Infinitely many correct algorithms for the same

algorithmic problem

Input instance,
adhering to
the
specification

Algorithm Output
related to
the input as
required

What is a Good Algorithm?
�Efficient:
�Running time
�Space used

�Efficiency as a function of input size:
�The number of bits in an input number
�Number of data elements (numbers, points)

Measuring the Running Time

Experimental Study
�Write a program that implements the algorithm
�Run the program with data sets of varying size

and composition.
�Use a method like System.currentTimeMillis() to

get an accurate measure of the actual running
time.

How should we measure the
running time of an algorithm?

Limitations of Experimental Studies

� It is necessary to implement and test the
algorithm in order to determine its running time.

�Experiments can be done only on a limited set of
inputs, and may not be indicative of the running
time on other inputs not included in the
experiment.

� In order to compare two algorithms, the same
hardware and software environments should be
used.

Beyond Experimental Studies

We will develop a general methodology for
analyzing running time of algorithms. This
approach
�Uses a high-level description of the algorithm

instead of testing one of its implementations.
�Takes into account all possible inputs.
�Allows one to evaluate the efficiency of any

algorithm in a way that is independent of the
hardware and software environment.

Pseudo-Code
� A mixture of natural language and high-level

programming concepts that describes the main
ideas behind a generic implementation of a data
structure or algorithm.

� Eg: Algorithm arrayMax(A, n):
Input: An array A storing n integers.
Output: The maximum element in A.
currentMax ← A[0]
for i ← 1 to n-1 do

if currentMax < A[i] then currentMax ← A[i]
return currentMax

Pseudo-Code
It is more structured than usual prose but
less formal than a programming language

�Expressions:
�use standard mathematical symbols to

describe numeric and boolean expressions
�use ← for assignment (“=” in Java)
�use = for the equality relationship (“==” in

Java)
�Method Declarations:
�Algorithm name(param1, param2)

Pseudo Code
�Programming Constructs:
�decision structures: if ... then ... [else ...]
�while-loops: while ... do
�repeat-loops: repeat ... until ...
� for-loop: for ... do
�array indexing: A[i], A[i,j]

�Methods:
�calls: object method(args)
�returns: return value

Analysis of Algorithms

�Primitive Operation: Low-level operation
independent of programming language.
Can be identified in pseudo-code. For eg:
�Data movement (assign)
�Control (branch, subroutine call, return)
�arithmetic an logical operations (e.g. addition,

comparison)
�By inspecting the pseudo-code, we can

count the number of primitive operations
executed by an algorithm.

Sort

Example: Sorting
INPUT
sequence of numbers

a1, a2, a3,….,an
b1,b2,b3,….,bn

OUTPUT
a permutation of the
sequence of numbers

2 5 4 10 7 2 4 5 7 10

Correctness (requirements for the
output)
For any given input the algorithm
halts with the output:

• b1 < b2 < b3 < …. < bn
• b1, b2, b3, …., bn is a
permutation of a1, a2, a3,….,an

Running time
Depends on

• number of elements (n)
• how (partially) sorted
they are

• algorithm

Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start “empty handed”
• Insert a card in the right
position of the already sorted
hand

• Continue until all cards are
inserted/sorted

INPUT: A[1..n] – an array of integers
OUTPUT: a permutation of A such that
A[1]≤ A[2]≤ …≤A[n]

for j←2 to n do
key ← A[j]
Insert A[j] into the sorted sequence
A[1..j-1]
i←j-1
while i>0 and A[i]>key

do A[i+1]←A[i]
i--

A[i+1]←key

Analysis of Insertion Sort

for j←2 to n do
key←A[j]
Insert A[j] into the sorted
sequence A[1..j-1]
i←j-1
while i>0 and A[i]>key
do A[i+1]←A[i]

i--
A[i+1] ← key

cost
c1
c2
0

c3
c4
c5
c6
c7

times
n
n-1
n-1

n-1

n-1

2

n
jj

t
=∑

2
(1)n

jj
t

=
−∑

2
(1)n

jj
t

=
−∑

Total time = n(c1+c2+c3+c7) + ∑n
j=2 tj (c4+c5+c6)

– (c2+c3+c5+c6+c7)

Best/Worst/Average Case

�Best case: elements already sorted; tj=1,
running time = f(n), i.e., linear time.

�Worst case: elements are sorted in
inverse order; tj=j, running time = f(n2), i.e.,
quadratic time

�Average case: tj=j/2, running time = f(n2),
i.e., quadratic time

Total time = n(c1+c2+c3+c7) + ∑n
j=2 tj (c4+c5+c6)

– (c2+c3+c5+c6+c7)

Best/Worst/Average Case (2)

�For a specific size of input n, investigate
running times for different input instances:

Best/Worst/Average Case (3)
For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 ti
m

e

1 2 3 4 5 6 7 8 9 10 11 12 …..

best-case

average-case

worst-case

Best/Worst/Average Case (4)

� Worst case is usually used: It is an upper-
bound and in certain application domains (e.g.,
air traffic control, surgery) knowing the worst-
case time complexity is of crucial importance

� For some algorithms worst case occurs fairly
often

� Average case is often as bad as the worst
case

� Finding average case can be very difficult

Asymptotic Analysis
� Goal: to simplify analysis of running time by

getting rid of ”details”, which may be affected by
specific implementation and hardware
� like “rounding”: 1,000,001 ≈ 1,000,000
� 3n2 ≈ n2

� Capturing the essence: how the running time of
an algorithm increases with the size of the input
in the limit.
� Asymptotically more efficient algorithms are best for

all but small inputs

Asymptotic Notation
�The “big-Oh” O-Notation
�asymptotic upper bound
� f(n) is O(g(n)), if there

exists constants c and
n0, s.t. f(n) ≤ c g(n) for n
≥ n0

� f(n) and g(n) are
functions over non-
negative integers

�Used for worst-case
analysis

)(nf
()c g n⋅

0n Input Size

R
un

ni
ng

 T
im

e

Example
For functions f(n) and g(n) there are positive
constants c and n0 such that: f(n) ≤ c g(n) for n
≥ n0

conclusion:

2n+6 is O(n).

Another Example

On the other hand…
n2 is not O(n) because there
is no c and n0 such that:

n2 ≤ cn for n ≥ n0

The graph to the right
illustrates that no matter
how large a c is chosen
there is an n big enough
that n2 > cn) .

Asymptotic Notation
�Simple Rule: Drop lower order terms and

constant factors.
�50 n log n is O(n log n)
�7n - 3 is O(n)
�8n2 log n + 5n2 + n is O(n2 log n)

�Note: Even though (50 n log n) is O(n5), it
is expected that such an approximation be
of as small an order as possible

Asymptotic Analysis of Running Time
� Use O-notation to express number of primitive

operations executed as function of input size.
� Comparing asymptotic running times
�an algorithm that runs in O(n) time is better

than one that runs in O(n2) time
�similarly, O(log n) is better than O(n)
�hierarchy of functions: log n < n < n2 < n3 < 2n

� Caution! Beware of very large constant factors.
An algorithm running in time 1,000,000 n is still
O(n) but might be less efficient than one running
in time 2n2, which is O(n2)

Example of Asymptotic Analysis
Algorithm prefixAverages1(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that

A[i] is the average of elements X[0], ... , X[i].
for i ← 0 to n-1 do

a ← 0
for j ← 0 to i do

a ← a + X[j]
A[i] ← a/(i+1)

return array A
Analysis: running time is O(n2)

1
step

i iterations
with
i=0,1,2...n-
1

n iterations

A Better Algorithm
Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such
that A[i] is the average of elements X[0], ... , X[i].
s ← 0
for i ← 0 to n do

s ← s + X[i]
A[i] ← s/(i+1)

return array A
Analysis: Running time is O(n)

Asymptotic Notation (terminology)

� Special classes of algorithms:
� Logarithmic: O(log n)
� Linear: O(n)
� Quadratic: O(n2)
� Polynomial: O(nk), k ≥ 1
� Exponential: O(an), a > 1

� “Relatives” of the Big-Oh
�Ω (f(n)): Big Omega -asymptotic lower bound
�Θ (f(n)): Big Theta -asymptotic tight bound

� The “big-Omega” Ω−
Notation
� asymptotic lower bound
� f(n) is Ω(g(n)) if there exists

constants c and n0, s.t.
c g(n) ≤ f(n) for n ≥ n0

� Used to describe best-
case running times or
lower bounds for
algorithmic problems
� E.g., lower-bound for

searching in an unsorted
array is Ω(n).

Input Size

R
un

ni
ng

 T
im

e)(nf
()c g n⋅

0n

Asymptotic Notation

� The “big-Theta” Θ−Notation
� asymptotically tight bound
� f(n) = Θ(g(n)) if there exists

constants c1, c2, and n0, s.t.
c1 g(n) ≤ f(n) ≤ c2 g(n) for n ≥
n0

� f(n) is Θ(g(n)) if and only if
f(n) is Ο(g(n)) and f(n) is
Ω(g(n))

� O(f(n)) is often misused
instead of Θ(f(n))

Asymptotic Notation

Input Size
R

un
ni

ng
 T

im
e)(nf

0n

)(ngc ⋅2

)(ngc ⋅1

Asymptotic Notation
Two more asymptotic notations
� "Little-Oh" notation f(n) is o(g(n))

non-tight analogue of Big-Oh
�For every c, there should exist n0 , s.t. f(n)

≤ c g(n) for n ≥ n0

�Used for comparisons of running times.
If f(n)=o(g(n)), it is said that g(n)
dominates f(n).

� "Little-omega" notation f(n) is ω(g(n))
non-tight analogue of Big-Omega

Asymptotic Notation
�Analogy with real numbers
� f(n) = O(g(n)) ≅ f ≤ g
� f(n) = Ω(g(n)) ≅ f ≥ g
� f(n) = Θ(g(n)) ≅ f = g
� f(n) = o(g(n)) ≅ f < g
� f(n) = ω(g(n)) ≅ f > g

�Abuse of notation: f(n) = O(g(n)) actually
means f(n) ∈O(g(n))

Comparison of Running Times

Running
Time

Maximum problem size (n)

1 second 1 minute 1 hour

400n 2500 150000 9000000

20n log n 4096 166666 7826087

2n2 707 5477 42426

n4 31 88 244

2n 19 25 31

Correctness of Algorithms
�The algorithm is correct if for any legal

input it terminates and produces the
desired output.

�Automatic proof of correctness is not
possible

�But there are practical techniques and
rigorous formalisms that help to reason
about the correctness of algorithms

Partial and Total Correctness

�Partial correctness

Any legal input Algorithm Output

IF this point is reached, THEN this is the desired output

�Total correctness

Any legal input Algorithm Output

INDEED this point is reached, AND this is the desired output

Assertions
� To prove correctness we associate a number of

assertions (statements about the state of the
execution) with specific checkpoints in the
algorithm.
� E.g., A[1], …, A[k] form an increasing sequence

� Preconditions – assertions that must be valid
before the execution of an algorithm or a
subroutine

� Postconditions – assertions that must be valid
after the execution of an algorithm or a
subroutine

Loop Invariants
� Invariants – assertions that are valid any

time they are reached (many times during
the execution of an algorithm, e.g., in
loops)

�We must show three things about loop
invariants:
� Initialization – it is true prior to the first

iteration
�Maintenance – if it is true before an iteration,

it remains true before the next iteration
�Termination – when loop terminates the

invariant gives a useful property to show the
correctness of the algorithm

Example of Loop Invariants (1)

� Invariant: at the start of
each for loop, A[1…j-1]
consists of elements
originally in A[1…j-1] but
in sorted order

for j ← 2 to length(A)
do key ← A[j]

i ← j-1
while i>0 and A[i]>key
do A[i+1] ← A[i]

i--
A[i+1] ← key

Example of Loop Invariants (2)

� Invariant: at the start of
each for loop, A[1…j-1]
consists of elements
originally in A[1…j-1] but
in sorted order

for j ← 2 to length(A)
do key ← A[j]

i ← j-1
while i>0 and A[i]>key
do A[i+1]← A[i]

i--
A[i+1] ← key

� Initialization: j = 2, the invariant trivially holds
because A[1] is a sorted array ☺

Example of Loop Invariants (3)

� Invariant: at the start of
each for loop, A[1…j-1]
consists of elements
originally in A[1…j-1] but
in sorted order

for j ← 2 to length(A)
do key ← A[j]

i ← j-1
while i>0 and A[i]>key
do A[i+1] ← A[i]

i--
A[i+1] ← key

� Maintenance: the inner while loop moves elements
A[j-1], A[j-2], …, A[j-k] one position right without
changing their order. Then the former A[j] element is
inserted into k-th position so that A[k-1] ≤ A[k] ≤
A[k+1].

A[1…j-1] sorted + A[j] → A[1…j] sorted

Example of Loop Invariants (4)

� Invariant: at the start of
each for loop, A[1…j-1]
consists of elements
originally in A[1…j-1] but
in sorted order

for j ← 2 to length(A)
do key ← A[j]

i ← j-1
while i>0 and A[i]>key
do A[i+1] ← A[i]

i--
A[i+1] ← key

� Termination: the loop terminates, when j=n+1. Then
the invariant states: “A[1…n] consists of elements
originally in A[1…n] but in sorted order” ☺

Math You Need to Review

� Properties of logarithms:
logb(xy) = logbx + logby
logb(x/y) = logbx - logby
logb xa = a logb x
logb a = logxa/logxb

� Properties of exponentials:
a(b+c) = abac ; abc = (ab)c

ab /ac = a(b-c) ; b = aloga b

� Floor: ⎣x⎦ = the largest integer ≤ x
� Ceiling: ⎡x⎤ = the smallest integer ≥ x

Math Review

�Geometric progression
�given an integer n0 and a real number 0< a ≠ 1

�geometric progressions exhibit exponential
growth

�Arithmetic progression

1
2

0

11 ...
1

nn
i n

i

aa a a a
a

+

=

−
= + + + + =

−∑

2

0
1 2 3 ...

2

n

i

n ni n
=

+
= + + + + =∑

Summations
�The running time of insertion sort is

determined by a nested loop

�Nested loops correspond to summations

for j←2 to length(A)
key←A[j]
i←j-1
while i>0 and A[i]>key

A[i+1]←A[i]
i←i-1

A[i+1]←key

2
2
(1) ()n

j
j O n

=
− =∑

Proof by Induction
�We want to show that property P is true for

all integers n ≥ n0

�Basis: prove that P is true for n0

� Inductive step: prove that if P is true for
all k such that n0 ≤ k ≤ n – 1 then P is also
true for n

�Example

�Basis

0

(1)() for 1
2

n

i

n nS n i n
=

+
= = ≥∑

1

0

1(1 1)(1)
2i

S i
=

+
= =∑

Proof by Induction (2)

0

1

0 0
2

(1)() for 1 k 1
2

() (1)

(1 1) (2)(1)
2 2

(1)
2

k

i

n n

i i

k kS k i n

S n i i n S n n

n n n nn n

n n

=

−

= =

+
= = ≤ ≤ −

= = + = − + =

− + − +
= − + = =

+
=

∑

∑ ∑

� Inductive Step

	Data Structures and Algorithms
	Algorithmic problem
	Algorithmic Solution
	What is a Good Algorithm?
	Measuring the Running Time
	Limitations of Experimental Studies
	Beyond Experimental Studies
	Pseudo-Code
	Pseudo-Code
	Pseudo Code
	Analysis of Algorithms
	Example: Sorting
	Insertion Sort
	Analysis of Insertion Sort
	Best/Worst/Average Case
	Best/Worst/Average Case (2)
	Best/Worst/Average Case (3)
	Best/Worst/Average Case (4)
	Asymptotic Analysis
	Asymptotic Notation
	Example
	Another Example
	Asymptotic Notation
	Asymptotic Analysis of Running Time
	Example of Asymptotic Analysis
	A Better Algorithm
	Asymptotic Notation (terminology)
	Asymptotic Notation
	Asymptotic Notation
	Asymptotic Notation
	Asymptotic Notation
	Comparison of Running Times
	Correctness of Algorithms
	Partial and Total Correctness
	Assertions
	Loop Invariants
	Example of Loop Invariants (1)
	Example of Loop Invariants (2)
	Example of Loop Invariants (3)
	Example of Loop Invariants (4)
	Math You Need to Review
	Math Review
	Summations
	Proof by Induction
	Proof by Induction (2)

