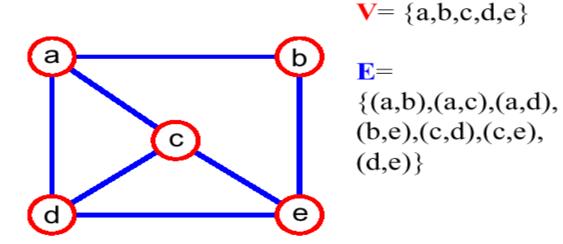
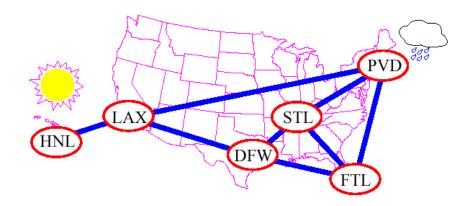
Graphs – Definition

- A graph G = (V,E) is composed of:
 - V: set of vertices
 - E \subset V \times V: set of **edges** connecting the **vertices**
- An edge e = (u,v) is a pair of vertices
- (u,v) is ordered, if **G** is a **directed** graph



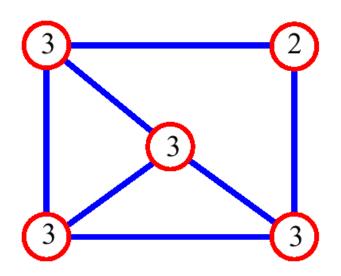
Applications

- Electronic circuits, pipeline networks
- Transportation and communication networks
- Modeling any sort of relationtionships (between components, people, processes, concepts)



Graph Terminology

- adjacent vertices: connected by an edge
- **degree** (of a **vertex**): # of adjacent vertices



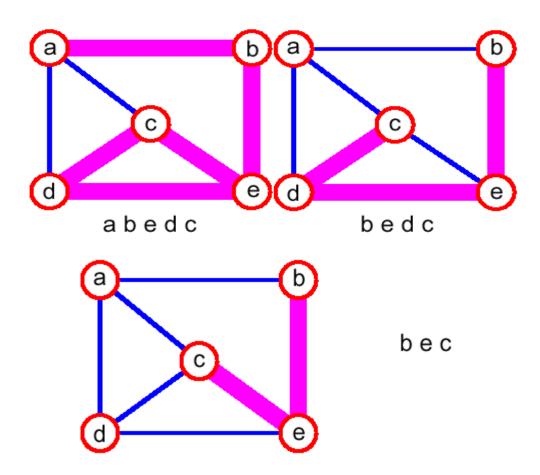
$$\sum_{v \in V} \deg(v) = 2(\# \text{ of edges})$$

Since adjacent vertices each count the adjoining edge, it will be counted twice

path: sequence of vertices v₁, v₂,...v_k such that consecutive vertices v_i and v_{i+1} are adjacent

Graph Terminology (2)

• simple path: no repeated vertices

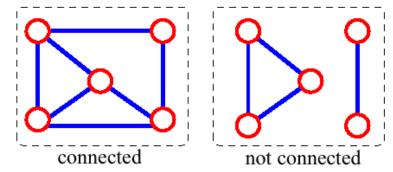


Graph Terminology (3)

• cycle: simple path, except that the last vertex is the same as the first vertex

С

 connected graph: any two vertices are connected by some path

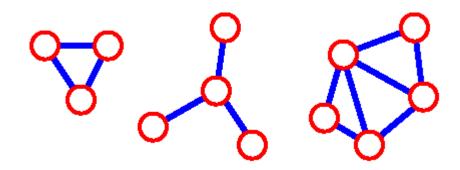


е

acda

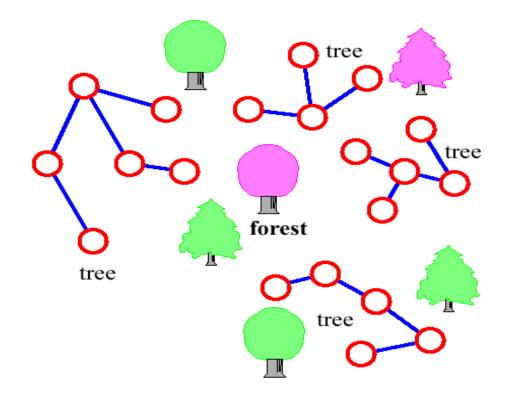
Graph Terminology (4)

- subgraph: subset of vertices and edges forming a graph
- connected component: maximal connected subgraph. E.g., the graph below has 3 connected components



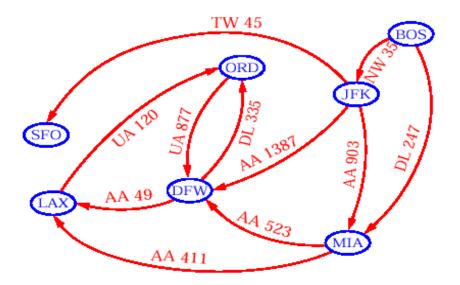
Graph Terminology (5)

- (free) tree connected graph without cycles
- forest collection of trees



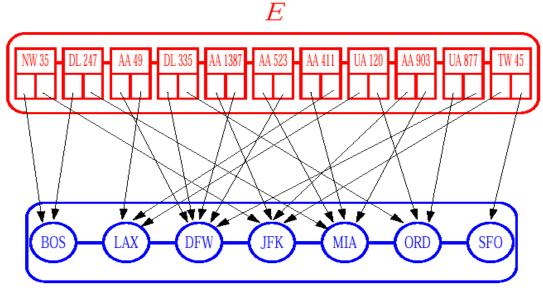
Data Structures for Graphs

- How can we represent a graph?
 - To start with, we can store the vertices and the edges in two containers, and we store with each edge object references to its start and end vertices



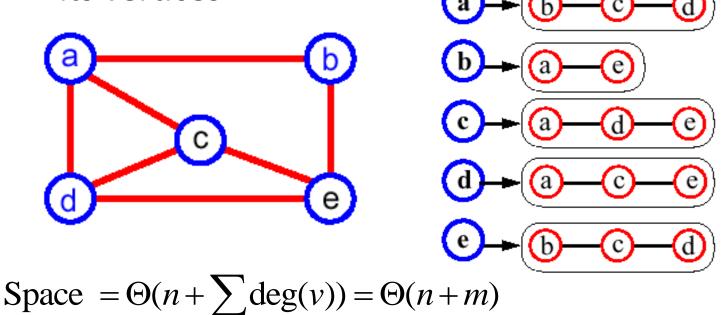
Edge List

- The edge list
 - Easy to implement
 - Finding the edges incident on a given vertex is inefficient since it requires examining the entire edge sequence



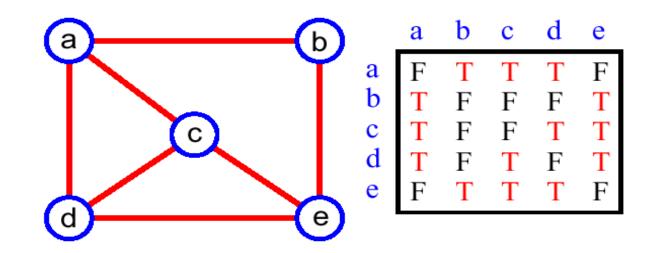
Adjacency List

- The Adjacency list of a vertex v: a sequence of vertices adjacent to v
- Represent the graph by the adjacency lists of all its vertices



Adjacency Matrix

- Matrix M with entries for all pairs of vertices
- M[i,j] = true there is an edge (i,j) in the graph
- M[i,j] = false there is no edge (i,j) in the graph
- Space = O(n²)



Graph Searching Algorithms

- Systematic search of every edge and vertex of the graph
- Graph G = (V,E) is either directed or undirected
- Today's algorithms assume an adjacency list representation
- Applications
 - Compilers
 - Graphics
 - Maze-solving
 - Mapping
 - Networks: routing, searching, clustering, etc.

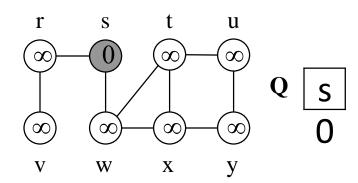
Breadth First Search

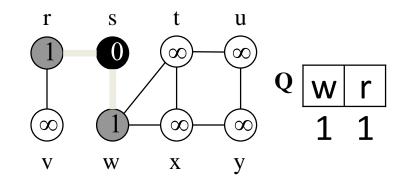
- A Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties
- BFS in an **undirected** graph G is like wandering in a labyrinth with a string.
- The starting vertex *s* is assigned a distance 0.
- In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited (**discovered**), and assigned distances of 1

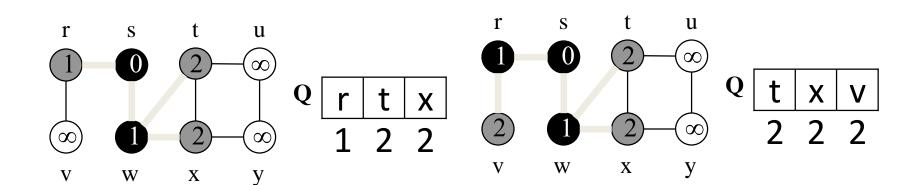
Breadth-First Search (2)

- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and assigned a distance of 2
- This continues until every vertex has been assigned a level
- The label of any vertex v corresponds to the length of the shortest path (in terms of edges) from s to v

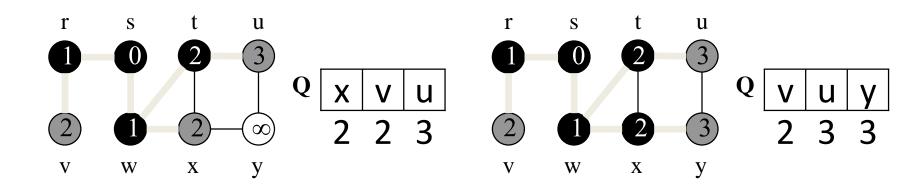
BFS Example





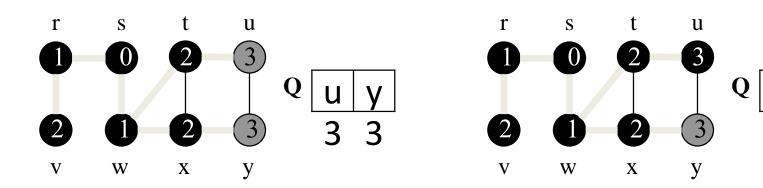


BFS Example

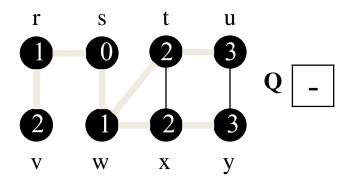


y

3



BFS Example: Result



BFS Algorithm

BFS(G,s)

	<pre>for each vertex u ∈ V[G]-{s}</pre>	Init all
02	color[u] ← white	vertices
03	$d[u] \leftarrow \infty$	Vertices
04	$\pi[u] \leftarrow \text{NIL}$	
05	color[s] 🔶 gray	Init BFS with <i>s</i>
06	d[s] ← 0	
07	$\pi[u] \leftarrow NIL$	
<mark>08</mark>	Q ← {s}	
09	while $Q \neq \emptyset$ do	Handle all <i>u</i> 's
10	u ← head[Q]	children before
11	for each v ∈ Adj[u] do	handling any
12	<pre>if color[v] = white then</pre>	children of
13	color[v] ← gray	
14	$d[v] \leftarrow d[u] + 1$	children
T T		
15	$\pi[v] \leftarrow u$	
15	$\pi[v] \leftarrow u$	

BFS Running Time

- Given a graph G = (V,E)
 - Vertices are enqueued if there color is white
 - Assuming that en- and dequeuing takes O(1) time the total cost of this operation is O(V)
 - Adjacency list of a vertex is scanned when the vertex is dequeued (and only then...)
 - The sum of the lengths of all lists is $\Theta(E)$. Consequently, O(E) time is spent on scanning them
 - Initializing the algorithm takes O(V)
- Total running time O(V+E) (linear in the size of the adjacency list representation of G)

BFS Properties

- Given a graph G = (V,E), BFS discovers all vertices reachable from a source vertex s
- It computes the shortest distance to all reachable vertices
- It computes a breadth-first tree that contains all such reachable vertices
- For any vertex v reachable from s, the path in the breadth first tree from s to v, corresponds to a shortest path in G

Breadth First Tree

• Predecessor subgraph of G

$$G_{\pi} = (V_{\pi}, E_{\pi})$$

$$V_{\pi} = \left\{ v \in V : \pi[v] \neq NIL \right\} \cup \left\{ s \right\}$$

$$E_{\pi} = \left\{ (\pi[v], v) \in E : v \in V_{\pi} - \left\{ s \right\} \right\}$$

- G_{π} is a breadth-first tree
 - V_{π} consists of the vertices reachable from s, and
 - for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G
- The edges in G_{π} are called tree edges

Depth-First Search

- A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and a can of paint
 - We start at vertex s, tying the end of our string to the point and painting s "visited (discovered)". Next we label s as our current vertex called u
 - Now, we travel along an arbitrary edge (u,v).
 - If edge (u,v) leads us to an already visited vertex v we return to u
 - If vertex v is unvisited, we unroll our string, move to v, paint v "visited", set v as our current vertex, and repeat the previous steps

Depth-First Search (2)

- Eventually, we will get to a point where all incident edges on u lead to visited vertices
- We then **backtrack** by unrolling our string to a previously visited vertex *v*. Then *v* becomes our current vertex and we repeat the previous steps
- Then, if all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure

DFS Algorithm

- Initialize color all vertices white
- Visit each and every white vertex using DFS-Visit
- Each call to DFS-Visit(u) roots a new tree of the depth-first forest at vertex u
- A vertex is **white** if it is undiscovered
- A vertex is gray if it has been discovered but not all of its edges have been discovered
- A vertex is **black** after all of its adjacent vertices have been discovered (the adj. list was examined completely)

DFS Algorithm (2)

DFS(G)

6

$1 \mathrm{for}$	· each	vertex $u \in$	V[G]
0	ما م	1	

2 **do** $color[u] \leftarrow$ WHITE

 $3 time \leftarrow 0$

4 for each vertex $u \in V[G]$

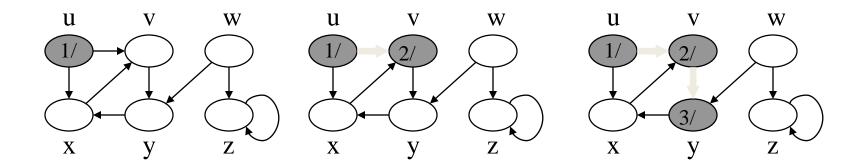
5 do if color[u] = WHITE

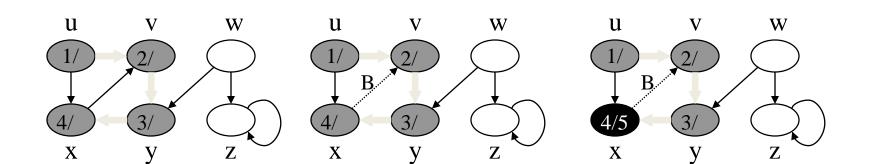
then DFS-VISIT(u)

Init all vertices

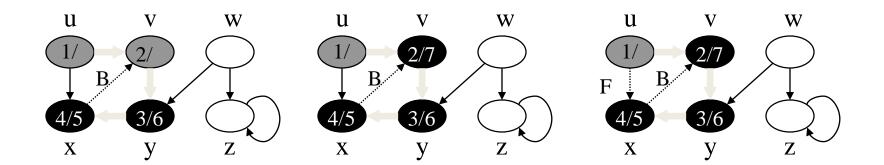
DFS-VISIT(u)		
$1 \ color[u] \leftarrow \text{GRAY}$	\triangleright White vertex u discovered.	
$2 d[u] \leftarrow time$	\triangleright Mark with discovery time.	
$3 time \leftarrow time + 1$	\triangleright Tick global time.	
4 for each $v \in Adj[u]$	\triangleright Explore all edges (u, v) .	Visit all children
5 do if $color[v] = WHI$	TE	recursively
10 L L		recursively
5 do if $color[v] = WHI$		recursively
5 do if $color[v] = WHI$ 6 then DFS-VI	$\operatorname{SIT}(v)$	recursively

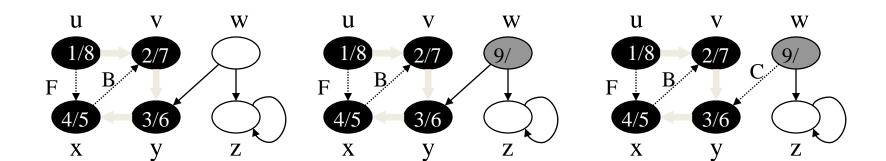
DFS Example





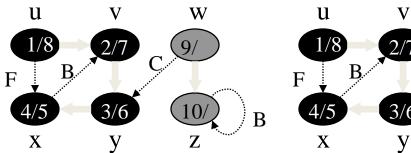
DFS Example (2)

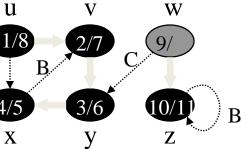


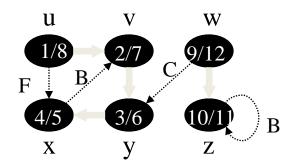


DFS Example (3)









DFS Algorithm (3)

- When DFS returns, every vertex *u* is assigned
 - a discovery time d[u], and a finishing time f[u]
- Running time
 - the loops in DFS take time $\Theta(V)$ each, excluding the time to execute DFS-Visit
 - DFS-Visit is called once for every vertex
 - its only invoked on white vertices, and
 - paints the vertex gray immediately
 - for each DFS-visit a loop interates over all Adj[v]
 - the total cost for DFS-Visit is $\Theta(E)$

$$\sum_{v \in V} |Adj[v]| = \Theta(E)$$

– the running time of DFS is Θ (V+E)

Predecessor Subgraph

• Define slightly different from BFS

$$G_{\pi} = (V, E_{\pi})$$
$$E_{\pi} = \left\{ (\pi[v], v) \in E : v \in V \text{ and } \pi[v] \neq \text{NIL} \right\}$$

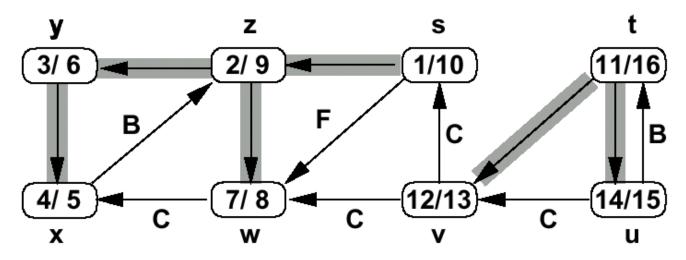
- The PD subgraph of a depth-first search forms a depth-first forest composed of several depth-first trees
- The edges in G_{π} are called tree edges

DFS Timestamping

• The DFS algorithm maintains a monotonically increasing global clock

- discovery time d[u] and finishing time f[u]

 For every vertex u, the inequality d[u] < f[u] must hold



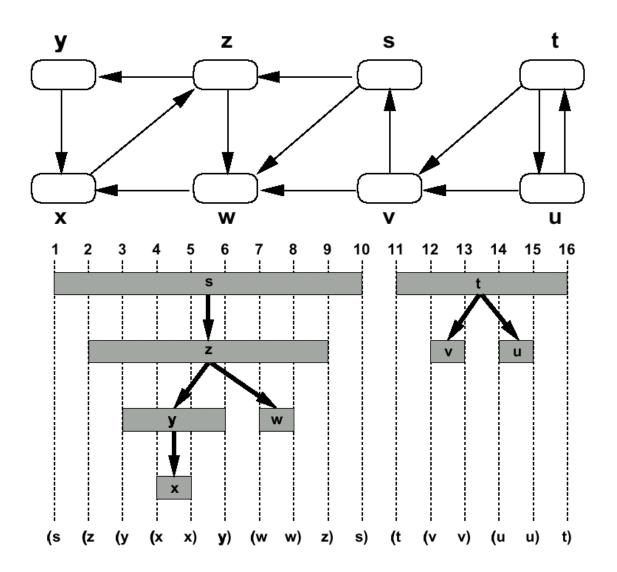
DFS Timestamping

- Vertex *u* is
 - white before time *d*[*u*]
 - gray between time d[u] and time f[u], and
 - black thereafter
- Notice the structure througout the algorithm.
 - gray vertices form a linear chain
 - correponds to a stack of vertices that have not been exhaustively explored (DFS-Visit started but not yet finished)

DFS Parenthesis Theorem

- Discovery and finish times have parenthesis structure
 - represent discovery of u with left parenthesis "(u"
 - represent finishin of u with right parenthesis "u)"
 - history of discoveries and finishings makes a well-formed expression (parenthesis are properly nested)
- Intuition for proof: any two intervals are either disjoint or enclosed
 - Overlaping intervals would mean finishing ancestor, before finishing descendant or starting descendant without starting ancestor

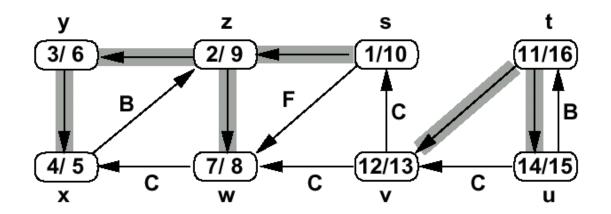
DFS Parenthesis Theorem (2)



DFS Edge Classification

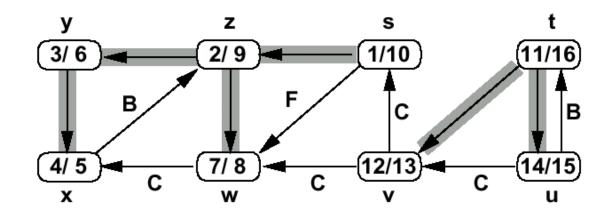
- Tree edge (gray to white)
 encounter new vertices (white)
- Back edge (gray to gray)

– from descendant to ancestor



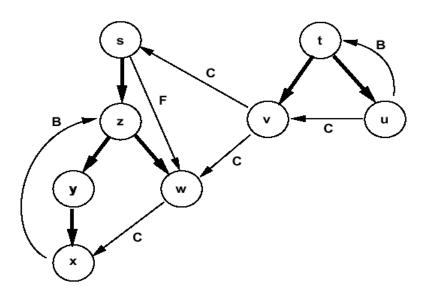
DFS Edge Classification (2)

- Forward edge (gray to black)
 from ancestor to descendant
- Cross edge (gray to black)
 - remainder between trees or subtrees



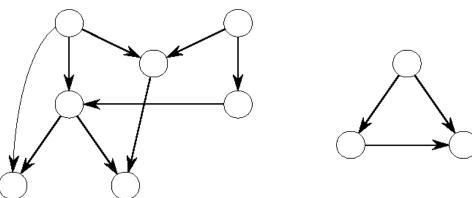
DFS Edge Classification (3)

- Tree and back edges are important
- Most algorithms do not distinguish between forward and cross edges



Directed Acyclic Graphs

• A DAG is a directed graph with no cycles



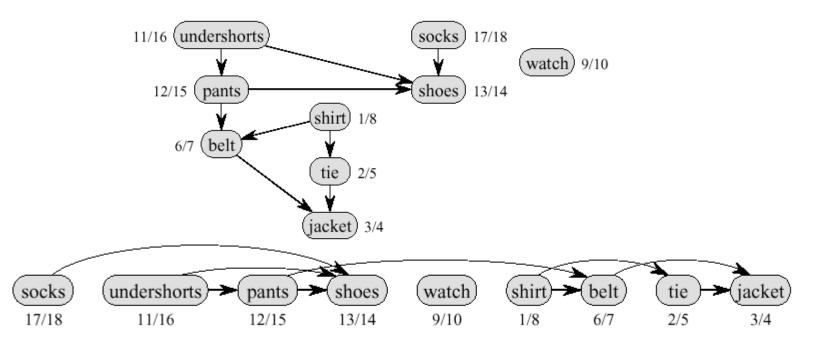
- Often used to indicate precedences among events,
 i.e., event a must happen before b
- An example would be a parallel code execution
- Total order can be introduced using Topological Sorting

DAG Theorem

- A directed graph G is acyclic if and only if a DFS of G yields no back edges. Proof:
 - suppose there is a back edge (u,v); v is an ancestor of u in DFS forest. Thus, there is a path from v to u in G and (u,v) completes the cycle
 - suppose there is a cycle c; let v be the first vertex in c to be discovered and u is a predecessor of v in c.
 - Upon discovering v the whole cycle from v to u is white
 - We must visit all nodes reachable on this white path before return DFS-Visit(v), i.e., vertex u becomes a descendant of v
 - Thus, (*u*,*v*) is a back edge
- Thus, we can verify a DAG using DFS!

Topological Sort Example

- Precedence relations: an edge from x to y means one must be done with x before one can do y
- Intuition: can schedule task only when all of its subtasks have been scheduled



Topological Sort

- Sorting of a directed acyclic graph (DAG)
- A topological sort of a DAG is a linear ordering of all its vertices such that for any edge (*u*,*v*) in the DAG, *u* appears before *v* in the ordering
- The following algorithm topologically sorts a DAG

Topological-Sort(G)

- 1) call DFS(G) to compute finishing times f[v] for each vertex v
- The2/inkedhistsesamarines, a sotal ard a linked list

3) return the linked list of vertices

Topological Sort

- Running time
 - depth-first search: O(V+E) time
 - insert each of the |V| vertices to the front of the linked list: O(1) per insertion
- Thus the total running time is O(V+E)

Topological Sort Correctness

- Claim: for a DAG, an edge $(u,v) \in E \Rightarrow f[u] > f[v]$
- When (*u*,*v*) explored, *u* is gray. We can distinguish three cases
 - v = gray ⇒ (u,v) = back edge (cycle, contradiction)
 - -v = white
 - \Rightarrow *v* becomes descendant of *u*
 - \Rightarrow *v* will be finished before *u*
 - $\Rightarrow f[v] < f[u]$
 - v = black
 - \Rightarrow *v* is already finished
 - $\Rightarrow f[v] < f[u]$
- The definition of topological sort is satisfied