
Graphs – Definition

• A graph G = (V,E) is composed of:
– V: set of vertices

– EV V: set of edges connecting the vertices

• An edge e = (u,v) is a pair of vertices

• (u,v) is ordered, if G is a directed graph



• Electronic circuits, pipeline networks

• Transportation and communication 
networks

• Modeling any sort of relationtionships 
(between components, people, processes, 
concepts)

Applications



Graph Terminology

• adjacent vertices: connected by an edge

• degree (of a vertex): # of adjacent vertices

• path: sequence of vertices v1 ,v2 ,. . .vk such that 
consecutive vertices vi and vi+1 are adjacent

Since adjacent vertices each 

count the adjoining edge, it 

will be counted twice

deg( ) 2(#  of edges)
v V

v






Graph Terminology (2)

• simple path: no repeated vertices



• cycle: simple path, except that the last vertex 
is the same as the first vertex

• connected graph: any two vertices are 
connected by some path

Graph Terminology (3)



Graph Terminology (4)

• subgraph: subset of vertices and edges 
forming a graph

• connected component: maximal connected 
subgraph. E.g., the graph below has 3 
connected components



Graph Terminology (5)

• (free) tree - connected graph without cycles

• forest - collection of trees



Data Structures for Graphs

• How can we represent a graph?

– To start with, we can store the vertices and the 
edges in two containers, and we store with each 
edge object references to its start and end vertices



Edge List

• The edge list
– Easy to implement

– Finding the edges incident on a given vertex is
inefficient since it requires examining the 
entire edge sequence



Adjacency List

• The Adjacency list of a vertex v: a sequence of 
vertices adjacent to v

• Represent the graph by the adjacency lists of all 
its vertices

Space ( deg( )) ( )n v n m   



• Matrix M with entries for all pairs of vertices

• M[i,j] = true – there is an edge (i,j) in the graph

• M[i,j] = false – there is no edge (i,j) in the graph

• Space = O(n2)

Adjacency Matrix



Graph Searching Algorithms

• Systematic search of every edge and vertex of the 
graph

• Graph G = (V,E) is either directed or undirected

• Today's algorithms assume an adjacency list 
representation

• Applications
– Compilers

– Graphics

– Maze-solving

– Mapping

– Networks: routing, searching, clustering, etc.



Breadth First Search

• A Breadth-First Search (BFS) traverses a connected 
component of a graph, and in doing so defines a 
spanning tree with several useful properties

• BFS in an undirected graph G is like wandering in a 
labyrinth with a string.

• The starting vertex s is assigned a distance 0.

• In the first round, the string is unrolled the length of 
one edge, and all of the edges that are only one edge 
away from the anchor are visited (discovered), and 
assigned distances of 1



Breadth-First Search (2)

• In the second round, all the new edges that can 
be reached by unrolling the string 2 edges are 
visited and assigned a distance of 2

• This continues until every vertex has been
assigned a level

• The label of any vertex v corresponds to the 
length of the shortest path (in terms of edges) 
from s to v



BFS Example

0

   

r s u



t



wv yx

0
sQ

01

 1  

r s u



t



wv yx

1
w

1
rQ

01

 1 2 

r s u



t

2

wv yx

2
t

1
r

2
xQ

01

2 1 2 

r s u



t

2

wv yx

2
x

2
t

2
vQ



BFS Example

01

2 1 2 

r s u

3

t

2

wv yx

2
v

2
x

3
uQ

01

2 1 2 3

r s u

3

t

2

wv yx

3
u

2
v

3
yQ

01

2 1 2 3

r s u

3

t

2

wv yx

3
y

3
uQ

01

2 1 2 3

r s u

3

t

2

wv yx

3
yQ



BFS Example: Result

01

2 1 2 3

r s u

3

t

2

wv yx

-Q



BFS Algorithm

BFS(G,s)

01 for each vertex u  V[G]-{s}

02 color[u]  white

03 d[u]  

04 p[u]  NIL

05 color[s]  gray

06 d[s]  0

07 p[u]  NIL

08 Q  {s}

09 while Q   do

10 u  head[Q]

11 for each v  Adj[u] do

12 if color[v] = white then

13 color[v]  gray

14 d[v]  d[u] + 1

15 p[v]  u

16 Enqueue(Q,v)

17 Dequeue(Q)

18 color[u]  black

Init all 
vertices

Init BFS with s

Handle all u’s 
children before 
handling any 
children of 
children



BFS Running Time

• Given a graph G = (V,E)
– Vertices are enqueued if there color is white

– Assuming that en- and dequeuing takes O(1) time the total 
cost of this operation is O(V)

– Adjacency list of a vertex is scanned when the vertex is 
dequeued (and only then…)

– The sum of the lengths of all lists is (E). Consequently, O(E) 
time is spent on scanning them

– Initializing the algorithm takes O(V)

• Total running time O(V+E) (linear in the size of the 
adjacency list representation of G)



BFS Properties

• Given a graph G = (V,E), BFS discovers all vertices 
reachable from a source vertex s

• It computes the shortest distance to all reachable 
vertices

• It computes a breadth-first tree that contains all 
such reachable vertices

• For any vertex v reachable from s, the path in the 
breadth first tree from s to v, corresponds to a 
shortest path in G



Breadth First Tree

• Predecessor subgraph of G

• Gp is a breadth-first tree
– Vp consists of the vertices reachable from s, and

– for all v  Vp, there is a unique simple path from s to v in 
Gp that is also a shortest path from s to v in G

• The edges in Gpare called tree edges

   

 

( , )

: [ ]

( [ ], ) : { }

G V E

V v V v NIL s

E v v E v V s

p p p

p

p p



  p  

 p   



Depth-First Search

• A depth-first search (DFS) in an undirected graph G 
is like wandering in a labyrinth with a string and a
can of paint
– We start at vertex s, tying the end of our string to the point 

and painting s “visited (discovered)”. Next we label s as our
current vertex called u

– Now, we travel along an arbitrary edge (u,v).

– If edge (u,v) leads us to an already visited vertex v we 
return to u

– If vertex v is unvisited, we unroll our string, move to v, 
paint v “visited”, set v as our current vertex, and repeat the 
previous steps



Depth-First Search (2)

• Eventually, we will get to a point where all incident
edges on u lead to visited vertices

• We then backtrack by unrolling our string to a 
previously visited vertex v. Then v becomes our 
current vertex and we repeat the previous steps

• Then, if all incident edges on v lead to visited
vertices, we backtrack as we did before. We continue 
to backtrack along the path we have traveled, 
finding and exploring unexplored edges, and 
repeating the procedure



DFS Algorithm 

• Initialize – color all vertices white

• Visit each and every white vertex using DFS-Visit

• Each call to DFS-Visit(u) roots a new tree of the 
depth-first forest at vertex u

• A vertex is white if it is undiscovered

• A vertex is gray if it has been discovered but not all 
of its edges have been discovered

• A vertex is black after all of its adjacent vertices have 
been discovered (the adj. list was examined 
completely)



Init all 
vertices

DFS Algorithm (2)

Visit all children 
recursively



DFS Example

u

x

v w

y z

1/

u

x

v w

y z

1/ 2/

u

x

v w

y z

1/ 2/

3/

u

x

v w

y z

1/ 2/

3/4/

u

x

v w

y z

1/ 2/

3/4/

B

u

x

v w

y z

1/ 2/

3/4/5

B



DFS Example (2)

u

x

v w

y z

1/ 2/

3/64/5

B

u

x

v w

y z

1/ 2/7

3/64/5

B

u

x

v w

y z

1/ 2/7

3/64/5

BF

u

x

v w

y z

1/8 2/7

3/64/5

BF

u

x

v w

y z

1/8 2/7

3/64/5

BF

9/

u

x

v w

y z

1/8 2/7

3/64/5

BF

9/
C



DFS Example (3)

u

x

v w

y z

1/8 2/7

3/64/5

BF

9/
C

10/

u

x

v w

y z

1/8 2/7

3/64/5

BF

9/
C

10/ B

u

x

v w

y z

1/8 2/7

3/64/5

BF

9/
C

10/11 B

u

x

v w

y z

1/8 2/7

3/64/5

BF

9/12
C

10/11 B











DFS Algorithm (3)

• When DFS returns, every vertex u is assigned
– a discovery time d[u], and a finishing time f[u]

• Running time
– the loops in DFS take time (V) each, excluding the 

time to execute DFS-Visit

– DFS-Visit is called once for every vertex
• its only invoked on white vertices, and

• paints the vertex gray immediately

– for each DFS-visit a loop interates over all Adj[v] 

– the total cost for DFS-Visit is (E)

– the running time of DFS is (V+E) 

[ ] ( )
v V

Adj v E


 



Predecessor Subgraph

• Define slightly different from BFS

• The PD subgraph of a depth-first search forms 
a depth-first forest composed of several 
depth-first trees

• The edges in Gpare called tree edges

 

( , )

( [ ], ) :  and [ ] NIL

G V E

E v v E v V v

p p

p



 p   p 



DFS Timestamping

• The DFS algorithm maintains a monotonically 
increasing global clock

– discovery time d[u] and finishing time f[u]

• For every vertex u, the inequality d[u] < f[u] 
must hold



DFS Timestamping

• Vertex u is
– white before time d[u]

– gray between time d[u] and time f[u], and

– black thereafter

• Notice the structure througout the 
algorithm. 
– gray vertices form a linear chain

– correponds to a stack of vertices that have not 
been exhaustively explored (DFS-Visit started 
but not yet finished)



DFS Parenthesis Theorem

• Discovery and finish times have parenthesis structure
– represent discovery of u with left parenthesis "(u"

– represent finishin of u with right parenthesis "u)"

– history of discoveries and finishings makes a well-formed 
expression (parenthesis are properly nested)

• Intuition for proof: any two intervals are either 
disjoint or enclosed
– Overlaping intervals would mean finishing ancestor, before 

finishing descendant or starting descendant without 
starting ancestor 



DFS Parenthesis Theorem (2)



DFS Edge Classification

• Tree edge (gray to white)

– encounter new vertices (white)

• Back edge (gray to gray)

– from descendant to ancestor



DFS Edge Classification (2)

• Forward edge (gray to black) 

– from ancestor to descendant

• Cross edge (gray to black)

– remainder – between trees or subtrees



DFS Edge Classification (3)

• Tree and back edges are important

• Most algorithms do not distinguish between 
forward and cross edges



Directed Acyclic Graphs

• A DAG is a directed graph with no cycles

• Often used to indicate precedences among events, 
i.e., event a must happen before b

• An example would be a parallel code execution

• Total order can be introduced using Topological 
Sorting



DAG Theorem

• A directed graph G is acyclic if and only if a DFS of G
yields no back edges. Proof:
– suppose there is a back edge (u,v); v is an ancestor of u in 

DFS forest. Thus, there is a path from v to u in G and (u,v) 
completes the cycle

– suppose there is a cycle c; let v be the first vertex in c to 
be discovered and u is a predecessor of v in c. 
• Upon discovering v the whole cycle from v to u is white

• We must visit all nodes reachable on this white path before return 
DFS-Visit(v), i.e., vertex u becomes a descendant of v

• Thus, (u,v) is a back edge

• Thus, we can verify a DAG using DFS!



Topological Sort Example

• Precedence relations: an edge from x to y means 
one must be done with x before one can do y

• Intuition: can schedule task only when all of its 
subtasks have been scheduled 



Topological Sort

• Sorting of a directed acyclic graph (DAG)

• A topological sort of a DAG is a linear ordering of all 
its vertices such that for any edge (u,v) in the DAG, u
appears before v in the ordering

• The following algorithm topologically sorts a DAG

• The linked lists comprises a total ordering

Topological-Sort(G)

1) call DFS(G) to compute finishing times f[v] for each vertex v

2) as each vertex is finished, insert it onto the front of a linked list

3) return the linked list of vertices



Topological Sort

• Running time

– depth-first search: O(V+E) time

– insert each of the |V| vertices to the front of the 
linked list: O(1) per insertion

• Thus the total running time is O(V+E) 



Topological Sort Correctness

• Claim: for a DAG, an edge 

• When (u,v) explored, u is gray. We can distinguish 
three cases
– v = gray

 (u,v) = back edge (cycle, contradiction)

– v = white
 v becomes descendant of u
 v will be finished before u
 f[v] < f[u]

– v = black
 v is already finished
 f[v] < f[u]

• The definition of topological sort is satisfied

( , ) [ ] [ ]u v E f u f v  


