
February 8, 2003 1

Shortest Path

• Generalize distance to weighted setting
• Digraph G = (V,E) with weight function W: E  R

(assigning real values to edges)
• Weight of path p = v1  v2  …  vk is

• Shortest path = a path of the minimum weight
• Applications

– static/dynamic network routing
– robot motion planning
– map/route generation in traffic

1

1

1

() (,)
k

i i

i

w p w v v








February 8, 2003 2

Shortest-Path Problems

• Shortest-Path problems

– Single-source (single-destination). Find a shortest path
from a given source (vertex s) to each of the vertices. The
topic of this lecture.

– Single-pair. Given two vertices, find a shortest path
between them. Solution to single-source problem solves
this problem efficiently, too.

– All-pairs. Find shortest-paths for every pair of vertices.
Dynamic programming algorithm.

– Unweighted shortest-paths – BFS.

February 8, 2003 3

Optimal Substructure

• Theorem: subpaths of shortest paths are
shortest paths

• Proof (cut and paste)

– if some subpath were not the shortest path, one
could substitute the shorter subpath and create a
shorter total path

February 8, 2003 4

Triangle Inequality

• Definition
– d(u,v)  weight of a shortest path from u to v

• Theorem
– d(u,v)  d(u,x) + d(x,v) for any x

• Proof
– shortest path u  v is no longer than any other path u  v –

in particular, the path concatenating the shortest path u  x
with the shortest path x  v

February 8, 2003 5

Negative Weights and Cycles?

• Negative edges are OK, as long as there are no
negative weight cycles (otherwise paths with
arbitrary small “lengths” would be possible)

• Shortest-paths can have no cycles (otherwise
we could improve them by removing cycles)
– Any shortest-path in graph G can be no longer

than n – 1 edges, where n is the number of
vertices

February 8, 2003 6

Relaxation

• For each vertex in the graph, we maintain d[v], the
estimate of the shortest path from s, initialized to 
at start

• Relaxing an edge (u,v) means testing whether we can
improve the shortest path to v found so far by going
through u

5

u v

vu

2

2

9

5 7

Relax(u,v)

5

u v

vu

2

2

6

5 6

Relax(u,v)

Relax (u,v,w)

if d[v] > d[u]+w(u,v)then

d[v]  d[u]+w(u,v)

p[v]  u

February 8, 2003 7

Dijkstra's Algorithm

• Non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search (if all weights = 1, one can

simply use BFS)
• Use Q, priority queue keyed by d[v] (BFS used FIFO

queue, here we use a PQ, which is re-organized
whenever some d decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step select "closest" vertex u, add it to S, and relax

all edges from u

February 8, 2003 8

Dijkstra’s Pseudo Code

• Graph G, weight function w, root s

relaxing
edges

February 8, 2003 9

Dijkstra’s Example

 

 

0s

u v

yx

10

5

1

2 3
9

4 6
7

2

10 

5 

0s

u v

yx

10

5

1

2 3
9

4 6
7

2

u v

8 14

5 7

0s

yx

10

5

1

2 3
9

4 6
7

2

8 13

5 7

0s

u v

yx

10

5

1

2 3
9

4 6
7

2

February 8, 2003 10

• Observe
– relaxation step (lines 10-11)

– setting d[v] updates Q (needs Decrease-Key)

– similar to Prim's MST algorithm

Dijkstra’s Example (2)

8 9

5 7

0

u v

yx

10

5

1

2 3
9

4 6
7

2

8 9

5 7

0

u v

yx

10

5

1

2 3
9

4 6
7

2

February 8, 2003 11

Dijkstra’s Correctness

• We will prove that whenever u is added to S, d[u] =
d(s,u), i.e., that d is minimum, and that equality is
maintained thereafter

• Proof
– Note that "v, d[v]  d(s,v)
– Let u be the first vertex picked such that there is a shorter

path than d[u], i.e., that  d[u] > d(s,u)
– We will show that this assumption leads to a contradiction

February 8, 2003 12

Dijkstra Correctness (2)

• Let y be the first vertex V – S on the actual shortest
path from s to u, then it must be that d[y] = d(s,y)
because
– d[x] is set correctly for y's predecessor x S on the shortest

path (by choice of u as the first vertex for which d is set
incorrectly)

– when the algorithm inserted x into S, it relaxed the edge
(x,y), assigning d[y] the correct value

February 8, 2003 13

• But d[u] > d[y]  algorithm would have chosen y
(from the PQ) to process next, not u  Contradiction

• Thus d[u] = d(s,u) at time of insertion of u into S, and
Dijkstra's algorithm is correct

Dijkstra Correctness (3)

[] (,) (initial assumption)

(,) (,) (optimal substructure)

[] (,) (correctness of [])

[] (no negative weights)

d u s u

s y y u

d y y u d y

d y

> d

 d  d

  d



February 8, 2003 14

Dijkstra’s Running Time

• Extract-Min executed |V| time
• Decrease-Key executed |E| time
• Time = |V| TExtract-Min + |E| TDecrease-Key

• T depends on different Q implementations

Q T(Extract
-Min)

T(Decrease-
Key)

Total

array O(V) O(1) O(V 2)

binary heap O(lg V) O(lg V) O(E lg V)

Fibonacci heap O(lg V) O(1) (amort.) O(V lgV + E)

