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Shortest Path

• Generalize distance to weighted setting
• Digraph G = (V,E) with weight function W: E  R 

(assigning real values to edges)
• Weight of path p = v1  v2  …  vk is

• Shortest path = a path of the minimum weight
• Applications

– static/dynamic network routing
– robot motion planning
– map/route generation in traffic
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Shortest-Path Problems

• Shortest-Path problems

– Single-source (single-destination). Find a shortest path 
from a given source (vertex s) to each of the vertices. The 
topic of this lecture.

– Single-pair. Given two vertices, find a shortest path 
between them. Solution to single-source problem solves 
this problem efficiently, too.

– All-pairs. Find shortest-paths for every pair of vertices. 
Dynamic programming algorithm. 

– Unweighted shortest-paths – BFS.  
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Optimal Substructure

• Theorem: subpaths of shortest paths are 
shortest paths

• Proof (cut and paste)

– if some subpath were not the shortest path, one 
could substitute the shorter subpath and create a 
shorter total path
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Triangle Inequality

• Definition
– d(u,v)  weight of a shortest path from u to v

• Theorem
– d(u,v)  d(u,x) + d(x,v) for any x

• Proof 
– shortest path u  v is no longer than any other path u  v –

in particular, the path concatenating the shortest path u  x 
with the shortest path x  v 
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Negative Weights and Cycles?

• Negative edges are OK, as long as there are no 
negative weight cycles (otherwise paths with 
arbitrary small “lengths” would be possible)

• Shortest-paths can have no cycles (otherwise 
we could improve them by removing cycles)
– Any shortest-path in graph G can be no longer 

than n – 1 edges, where n is the number of 
vertices
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Relaxation

• For each vertex in the graph, we maintain d[v], the 
estimate of the shortest path from s, initialized to 
at start

• Relaxing an edge (u,v) means testing whether we can 
improve the shortest path to v found so far by going 
through u
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Relax(u,v)

Relax (u,v,w)

if d[v] > d[u]+w(u,v)then

d[v]  d[u]+w(u,v)

p[v]  u



February 8, 2003 7

Dijkstra's Algorithm

• Non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search (if all weights = 1, one can 

simply use BFS)
• Use Q, priority queue keyed by d[v] (BFS used FIFO 

queue, here we use a PQ, which is re-organized 
whenever some d decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step select "closest" vertex u, add it to S, and relax 

all edges from u



February 8, 2003 8

Dijkstra’s Pseudo Code

• Graph G, weight function w, root s

relaxing 
edges
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Dijkstra’s Example
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• Observe
– relaxation step (lines 10-11)

– setting d[v] updates Q (needs Decrease-Key)

– similar to Prim's MST algorithm

Dijkstra’s Example (2)

8 9

5 7

0

u v

yx

10

5

1

2 3
9

4 6
7

2

8 9

5 7

0

u v

yx

10

5

1

2 3
9

4 6
7

2



February 8, 2003 11

Dijkstra’s Correctness

• We will prove that whenever u is added to S, d[u] = 
d(s,u), i.e., that d is minimum, and that equality is 
maintained thereafter

• Proof
– Note that "v, d[v]  d(s,v)
– Let u be the first vertex picked such that there is a shorter 

path than d[u], i.e., that  d[u] > d(s,u)
– We will show that this assumption leads to a contradiction
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Dijkstra Correctness (2)

• Let y be the first vertex V – S on the actual shortest 
path from s to u, then it must be that d[y] = d(s,y) 
because
– d[x] is set correctly for y's predecessor x S on the shortest 

path (by choice of u as the first vertex for which d is set 
incorrectly)

– when the algorithm inserted x into S, it relaxed the edge 
(x,y), assigning d[y] the correct value
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• But d[u] > d[y]  algorithm would have chosen y
(from the PQ) to process next, not u  Contradiction

• Thus d[u] = d(s,u) at time of insertion of u into S, and 
Dijkstra's algorithm is correct

Dijkstra Correctness (3)

[ ] ( , ) (initial assumption)

( , ) ( , ) (optimal substructure)
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Dijkstra’s Running Time

• Extract-Min executed |V| time
• Decrease-Key executed |E| time
• Time = |V| TExtract-Min + |E| TDecrease-Key

• T depends on different Q implementations

Q T(Extract
-Min)

T(Decrease-
Key)

Total

array O(V) O(1) O(V 2)

binary heap O(lg V) O(lg V) O(E lg V)

Fibonacci heap O(lg V) O(1) (amort.) O(V lgV + E)


